Mineral density of the vertebral body bone tissue after spondylodesis (a review of literature)

Volodymyr Radchenko, Sergey Kosterin, Ninel Dedukh, Nataliya Ashukina

Abstract


The purpose of this analytical literature review was to generalize results of researches in studying the mineral bone tissue density (MBTD) of the vertebral bodies, adjacent to an area of spondylodesis. It was revealed that spondylodesis was followed by both increases and decreases of MBTD both in the very area of spondylodesis  and in adjacent vertebral motor segments. Changes in MBTD depended upon different factors, including an effect of fixing devices on the area of spondylodesis and peculiarities in the bone tissue regeneration close to an implant, the patient’s age, osteoporotic manifestations in the vertebral column both before and after the surgical intervention. It is necessary to study MBTD peculiarities in the vertebral bodies, located above and below the area of spondylodesis, relations of local manifestations of osteoporosis with systemic changes in the vertebral column and skeleton at large. Disorders in the bone tissue remodelling in vertebral bodies demonstrate negative changes in MBTD. The discrepancy of the results, present in scientific literature, emphasizes necessity to continue studies in this direction.

Keywords


spinal fusion; bone mineral density of vertebras

References


Радченко В.А. Практикум по стабилизации грудного и поясничного отделов позвоночника / В.А. Радченко, Н.А. Корж. — Х.: Прапор, 2004. — 154 с.

Хвисюк Н.И. Стабилизация при повреждениях грудного и поясничного отделов позвоночника / Н.И. Хвисюк, В.А. Радченко, Н.А. Корж // Повреждения позвоночникаи спинного мозга. — Киев: КНИГА плюс, 2001. — 388 с.

Радченко В.А. Спондилодез при повреждениях позвоночника / В.А. Радченко, К.А. Попсуйшапка // Травма. — 2011. — Т. 12, № 1. — С. 80–83.

Дегенеративні зміни у суміжних хребтових сегментах після стабілізуючих операцій на хребті (літературний огляд) / В.О. Радченко, Н.В. Дєдух, С.В. Малишкіна, В.І. Федак // Ортопед. травматол. — 2009. — № 3. — С. 101–111.

Радченко В.О. Дегенеративні захворювання суміжних (до оперованого) сегментів хребта / В.О. Радченко, В.І. Федак // Український морфологічний альманах. — 2010. — Т. 8, № 2. — С. 173–175.

A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration / P. Ekman, H. Moller, A. Shalabi et al. // Eur. Spine J. — 2009. — Vol. 18. — P. 1175–1186.

Effect of osteoporosis on morphology and mobility of the lumbar spine / Z. Yang, J. Griffith, P. Leung, R. Lee // Spine. — 2009. — Vol. 34, № 3. — P. 115–121.

Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture / M.N. Tzermiadianos, S.M. Renner, F.M. Phillips, A.G. Hadjipavios // Eur. Spine J. — 2008. — Vol. 17. — P. 1522–1530.

Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women / S. Muraki, S. Yamamoto, H. Ishibashi et al. // Osteoporosis Int. — 2004. — Vol. 15. — P. 724–728.

Радченко В.А. Минеральная плотность тел позвонков и состояние межпозвонковых дисков / В.А. Радченко, С.Б. Костерин, Н.В. Дедух // Ортопед. травматол. — 2011. — № 1. — С. 103–106.

Relationship between gender, bone mineral density, and disc degeneration in the lumbar spine: a study in elderly subjects using an eight-level MRI-based disc degeneration grading system / Y.-X.J. Wang, J.F. Griffith, H.T. Ma et al. // Osteoporos Int. — 2010. — Vol. 22, № 1. — Р. 91–96.

The relationship between degenerative changes and osteoporosis in the lumbar spine / J.Y. MarguliesA. Paizer, M. Nyska et al. // Clin. Orthop. Rel. Res. — 1996. — Vol. 324. — P. 145–152.

Comparision between sheep and human cervical spines: an anatomic, radiographic, bone mineral density and biomechanical study / F. Kandziora, G. Shollmeir, M. Scholz et al. // Spine. — 2001. — Vol. 25. — Р. 1028–1037.

The effect of a stiff spinal implant and its loosening on bone mineral content in canines / D.D. Dalenberg, M.A. Asher, R.G. Robinson, G. Jayaraman // Spine. — 1993. — Vol. 18. — P. 1862–1866.

The effect of a stiff spinal implant on the bone mineral content of the lumbar spine in dogs / K.R. Smith, T.R. Hunt, M.A. Asher et al. // J. Bone Joint Surg. — 1991. — Vol. 73-A. — P. 115–123.

The effect of spinal implant rigidity on vertebral bone density. A canine model / P.C. McAfee, I.D. Farey, C.E. Sutterlin et al. // Spine. –1991. — Vol. 16. — P. S190–S197.

Boden S.D. Overview of the biology of lumbar spine fusion and prinsiples for selecting a bone graft substitute / S.D. Boden // Spine. — 2002. — Vol. 27. — P. 526–531.

Федак В.І. Структурна організація суміжних хребтових сегментів при введенні у міжтіловий проміжок поперекового відділу хребта імплантатів із різних біоматеріалів / В.І. Федак, Н.В. Дєдух, С.В. Малишкіна // Ортопед. травматол. — 2009. — № 2. — С. 69–75. — ISSN 0030-5987.

Influence of orthopedic implant structure on adjacent bone density and on stability / F. Likibi, G. Chabot, M. Assad, Ch.-H. Rivard // Am. J. Orthop. — 2008. — Vol. 37. — P. 78–83.

Сages augmented with mineralized collagen and platelet-rich plasma as an osteoconductive/inductive combination for interbody fusion / M Scholz, P. Schleicher, T. Eindorf et al. // Spine. — 2010. — Vol. 35. — P. 740–746.

An experimental study of lumbar destabilization. Restabilization and bone density / G.J. Bennett, H.A. Serhan, P.M. Sorini, B.H. Willis // Spine. — 1997. — Vol. 22. — P. 1448–1453.

An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density / K. Hasegawa, M. Abe, T. Washio, T. Haro // Spine. — 2001. — Vol. 26. — P. 957–963.

Lee J.S. Bone mineral densities of the vertebral body and intertransverse fusion mass after instrumented intertransverse process fusion / J.S. Lee, K.W. Kim // Spine. — 2010. — Vol. 35. — P. 1106–1110.

Proximal junctional vertebral fracture in adults after spinal deformity surgery using pedicle screw constructs: analysis of morphological features / K. Watanabe, L.G. Lenke, K.H. Bridwell et al. / Spine. — 2010. — Vol. 35. — P. 138–145.

Subsequent vertebral fractures following spinal fusion surgery for degenerative lumbar disease: a mean ten-year follow-up / T. Toyone, T. Ozawa, K Kamikawa et al. // Spine. — 2010. — Vol. 35. — P. 1915–1918.

Etebar S. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability / S. Etebar, D.W. Cahill // J. Neurosurg. — 1999. — Vol. 90 (Suppl. 2). — P. 163-169.

Effects of bone mineral density on pedicle screw fixation / T.L. Halvorson, L.A. Kelley, K.A. Thomas et al. // Spine. — Vol. 19. — P. 2415–2420.

Christensen F.B. Lumbar spinal fusion. Outcome in relation to surgical methods, choice of implant and postoperative rehabilitation / F.B. Christensen // Acta Orthop. Scand. — 2004. — Vol. 75. — P. 2–43.

Vertebral body osteopenia associated with posterolateral spine fusion in humans / M.A. Myers, T. Casciani, M.G. Whitbeck, J.E. Puzas // Spine. — 1996. — Vol. 21(20). — P. 2368–2371.

Bogdanffy G.M. Early changes in bone mineral density above a combined anteroposterior L4–S1 lumbar spinal fusion. A clinical investigation / G.M. Bogdanffy, D.D. Ohnmeiss, R.D. Guyer // Spine. — 1995. — Vol. 20. — P. 1674–1678.

Frost H.M. The biology of fracture healing. An overview for clinicians / H.M. Frost // Clin. Orthop. Rel. Res. — 1989. — Vol. 248. — P. 283–293.

Lipscomb H.J. Spinal bone density following spinal fusion / H.J. Lipscomb, S.A. Grubb, R.V. Talmage // Spine. — 1989. — Vol. 14. — P. 477–479.

A prospective cohort analysis of adjacent vertebral body bone mineral density in lumbar surgery patients with or without instrumented posterolateral fusion: a 9- to 12-year follow-up / K. Singh, H.S. An, D. Samartzis et al. // Spine. — 2005. — Vol. 30. — P. 1750–1755.




DOI: https://doi.org/10.15674/0030-598720114100-104

Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Volodymyr Radchenko, Sergey Kosterin, Ninel Diedukh, Natalya Ashukina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.