Cellular mechanisms of reparative osteogenesis disturbances

Authors

  • Volodymyr Klimovitskiy
  • Volodymyr Oksimets
  • Andrey Popandopulo
  • Volodymyr Chernysh
  • Anatoliy Grebeniuk
  • Victoria Bushe
  • Abakar Magomedov
  • Yusup Magomedov

DOI:

https://doi.org/10.15674/0030-5987201125-16

Keywords:

periosteum cells, endosteum cells, mesenchymal stromal cells, osteorepair

Abstract

The article submits data of a study of the state of cellular sources of osteoreparation in injuries with low and high intensity. Low-energy injuries demonstrate that the above cellular sources of osteoreparation preserve their proliferative activity, cells of the periosteum and endosteum preserving their osteogenic determinacy. Preservation of osteogenic determinacy of periosteal and endosteal cells in low-energy injuries facilitate osteogenic differentiation of mesenchymal stromal cells of the medullary cavity, which proliferate into the bone wound, and formation of a specific bone regenerate in the fracture region. In high-energy injuries, there is some change in the morphofunctional state of cellular sources of osteoreparation: their proliferative activity decreases, periosteal and endosteal cells lose their osteogenic determinacy. As a result of these changes, the mesenchymal stromal cells of the bone marrow, which proliferate into the bone wound, do not receive any osteogenic determinacy and a nonspecific cicatrical tissue forms in the fracture region.

References

  1. Виноградова Т.П. Регенерация и пересадка костей / Т.П. Виноградова, Г.И. Лаврищева. — М.: Медицина, 1974. — 247 с.
  2. Оптимизация репаративного остеогенеза трансплантацией стромальных клеток костного мозга / В.Г. Гололобов, А.К. Дулаев, Р.В. Деев и др. // Клеточная трансплантология. — 2004. — № 1. — С. 15–16.
  3. Калашніков А.В. Діагностика та лікування розладів репаративного остеогенезу у хворих із переломами кісток / А.В. Калашніков, А.Т. Бруско // Вісник ортоп., травматол. та протез. — 2002. — № 3. — С. 35–40. — ISSN 0132-2486.
  4. Канторова В.И. Гетерогенность клеточных источников восстановительных процессов у позвоночных/ В.И. Канторова // Онтогенез. — 1985. — Т. 16, № 15. — С. 450–473.
  5. Лаврищева Г.И. Морфологические и клинические аспекты репаративной регенерации опорных органов и тканей / Г.И. Лаврищева, Г.А. Оноприенко. — М.: Медицина, 1996. — 208 с.
  6. Соколов В.А. Выбор метода фиксации сложных переломов длинных костей у пострадавших с политравмой / В.А. Соколов, Е.И. Бялик, О.И. Бояршинова // Современные технологии в травматологии и ортопедии: материалы науч. конф., посвящ. 75-летию со дня рожд. проф. К.М. Сиваша. — Москва, 1999. — С. 183–184.
  7. Энглези А.П. Влияние переменных магнитных полей на травматический отек и набухание головного мозга (экспериментально-клиническое исследование): дис. … канд. мед. наук / А.П. Энглези. — Киев, 1997. — 204 с.
  8. Craniofacial, vestibular and bone defects in mice lacking the distal less related gene Dlx5 / D. Acampora, G.R. Merla, L. Paleari et al. // Development. — 1999. — Vol. 126. — P. 3795–3809.
  9. Birjandinejad A. Augmentation plate fixation for the treatment of femoral and tibial nonunion after intramedullary nailing / A. Birjandinejad, M.H. Ebrahimzadeh, H. Ahmadzadeh Chabock // Orthopedics. — 2009. — Vol. 32, № 6. — P. 409.
  10. The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells / P. Charbord, H. Lerat, P. Herve et al. // Exp. Hematol. — 1990. — Vol. 18. — P. 276–282.
  11. A dominant negative cadherin inhibits osteoblast differentiation / S.L. Cheng, C.S. Shin, D.A. Towler, R. Civitelli // J. Bone Miner. Res. — 2000. — Vol. 15. — P. 2362–2370.
  12. Bone morphogenetic protein 3 is a negative regulator of bone density / A. Daluiski, T. Engstrand, M.E. Bahamonde et al. // Nat. Genet. — 2001. — Vol. 27. — P. 84–88.
  13. Ham A.W. Repair and transplantation of bone / A.W. Ham, W.R. Harris // The Biochemistry and Physiology of Bone. — N.Y.: Academic Press, 1971. — Vol. 3. — P. 338–379.
  14. Bone morphogenetic protein 2 promotes human calvaria cell aggregation and osteoblast differentiation by increasing N and E cadherin Expression / E. Haÿ, J. Lemonnier, D. Modrowski et al. // J. Cell Physiol. — 2000. — Vol. 183. — P. 117–128.
  15. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2 mediated craniosynostosis in humans / Y.H. Liu, Z. Tang, R.K. Kundu et al. // Dev. Biol. — 1999. — Vol. 205. — P. 260–274.
  16. Evidence that IGF binding protein 5 functions as a growth factor / N. Miyakoshi, C. Richman, Y. Kasukawa et al. // J. Clin. Invest. — 2001. — Vol. 107. — P. 73–81.
  17. Stimulation of bone formation in vitro and in rodents by statins / G. Mundy, R. Garrett, S. Harris et al. // Science. — 1999. — Vol. 286. — P. 1946–1949.
  18. Primary unreamed intramedullary nailing for open fracturesof the tibia / C.W. Oh, B.C. Park, J.C. Ihn, H.J. Park // Int. Orthop. — 2001. — Vol. 24, № 6. — P. 338–341.
  19. Expandable intramedullary nailing for tibial and femoral fractures: a preliminary analysis of perioperative complications / W.R. Smith, B. Ziran, J.F. Agudelo et al. // J. Orthop. Trauma. — 2006. — Vol. 20, № 5. — P. 310–314.
  20. Myofibroblasts and mechanoregulation of connective tissue remodelling / J.J. Tomasek, G. Gabbiani, B. Hinz et al. // Molecular cell biolog. — 2002. — Vol. 3. — P. 349–363.
  21. Yamaguchi A. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1 / A. Yamaguchi, T. Komori, T. Suda // Endocrinol. Rev. — 2000. — Vol. 21. — P. 393–411.
  22. The surgical technique and follow up of the treatment with locking internal fixation on long bone nonunion of extremities / C.Q. Zhang, X.G. Cheng, J.G. Sheng et al. // Zhonghua Wai Ke Za Zhi. — 2008. — Vol. 46, № 7. — P. 510–513.
  23. Targeted overexpression of insulin like growth factor I to osteoblasts to transgenic mice: increased trabecular bone volume without increased osteoblast proliferation / G. Zhao, M.C. Monier-Faugere, M.C. Langub et al. // Endocrinology. — 2000. — Vol. 141. — P. 2674–2682.

How to Cite

Klimovitskiy, V., Oksimets, V., Popandopulo, A., Chernysh, V., Grebeniuk, A., Bushe, V., Magomedov, A., & Magomedov, Y. (2011). Cellular mechanisms of reparative osteogenesis disturbances. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 5–16. https://doi.org/10.15674/0030-5987201125-16

Issue

Section

ORIGINAL ARTICLES