Structural-metabolic characteristics of bones and cartilage under the influence of hypothermia (the review of literature)

Authors

DOI:

https://doi.org/10.15674/0030-598720161124-133

Keywords:

hypothermia, the culture of osteogenic cells and cartilage, structural-metabolic features of bone and cartilage

Abstract

The goal: to analyze the data presented in the scientific literature concerning the structural and metabolic features of bone and cartilage tissue after the action of total induced hypothermia. General idea of hypothermia and its existing classifications for humans and animals are given in the first section of the literature review. This section also contains the data concerning the influence of hypothermia on the human body, in particular older people. The second section presents the results of experimental research on the effect of hypothermic conditions on cultured bone cells (osteoblasts and osteoclasts) and articular cartilage (chondrocytes). The research results show the negative impact of induced total hypothermia of varying intensity on the structural-metabolic parameters of these cultured cells. Ultrastructural changes were noted in the cytoplasm and cells nuclei, as well as disturbances in the metabolism of matrix macromolecules. The third section deals with general questions of influence of total induced hypothermia on bone in normal and osteoporosis. It has been established that hypothermia directly affects bone tissue, destroying its structural-metabolic characteristics. Severe destructive changes in cells, matrix and micro elemental composition of bones have been noticed. It is shown that hypothermia causes systemic changes in the body (of the antioxidant system, hormone balance, blood supply, and others). Under the influence of hypothermia significant violations of osteoblasts ultrastructure, increased osteoclastogenesis, reduced osteoblastogenesis and activation of bone resorption were recorded in bone. The fourth section presents the data about structural-metabolic condition of articular cartilage after the action of severe hypothermia early after exposure. It is shown that severe hypothermia leads to pronounced ultra structural changes of articular cartilage cells and extracellular matrix. 

References

Ivanоchko VМ. Influence of deep hypothermia on organs and tissues (review).Аktualni putanja meduchnoji nauki ta practiki. 2015;82(2, Kn. 2): P. 19–25.

Mallet ML. Pathophysiology of accidental hypothermia. Int J Medicine. 2002;95(12):775–785.

Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37(7 Suppl):S186–202. doi: 10.1097/CCM.0b013e3181aa5241.

Gregory JS, Bergstein JM, Aprahamian C, Wittmann DH, Quebbeman EJ. Comparison of three methods of rewarming from hypothermia: advantages of extracorporeal blood warming. J Trauma. 1991;31(9):1247–51.

Steinemann S, Shackford SR, Davis JW. Implications of admission hypothermia in trauma patients. J Trauma. 1999;30(2):200–2.

Gregory JS, Flancbaum L, Townsend MC, Cloutier CT, Jonasson O. Incidence and timing of hypothermia in trauma patients undergoing operations. J Trauma. 1991;31(6):795–8.

Hildebrand F, van Griensven M, Giannoudis P, Schreiber T, Frink M, Probst C, Grotz M, Krettek C, Pape HC. Impact of hypothermia on the immunologic response after trauma and elective surgery. Surg Technol Int. 2005;14:41–50.

Martin RS, Kilgo PD, Miller PR, Hoth JJ, Meredith JW, Chang MC. Injury-associated hypothermia: an analysis of the 2004 National Trauma Data Bank. Shock. 2005;24(2):114–8.

Beilman GJ, Blondet JJ, Nelson TR, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore EE, Cohn SM. Early hypothermia in severely injured trauma patients is a significant risk factor for multiple organ dysfunction syndrome but not mortality. Ann Surg. 2009;249(5):845–50. doi: 10.1097/SLA.0b013e3181a41f6f.

Gentilello LM, Jurkovich GJ, Stark MS, Hassantash SA, O'Keefe GE. Is hypothermia in the victim of major trauma protective or harmful? A randomized, prospective study. Ann Surg. 1997;226(4):439–47.

Brown DJ, Brugger H, Boyd J, Paal P. Accidental Hypothermia. Engl J Med. 2012;367(20):1930–38. doi: 10.1056/NEJMra1114208.

Ventsovskaya EA, Shiloh AV, Babitchuk GA. Termoregulators, sleep and temperature effects. Problems of Cryobiology and Cryomedicine – Problemy Kriobiologii i Kriomediciny. 2010;20(4):362–78.

Lomako VV, Samokhina LM. Effect of rhythmic cooling on some ethological and biochemical indices in rats with experimental depression. Problems of Cryobiology and Cryomedicine – Problemy Kriobiologii i Kriomediciny. 2011;21(1):22–33.

Frink M, Flone S, van Griensven M, Mommsen P, Hildebrand F. Facts and fiction: the impact of hypothermia on molecular mechanism following major challenge. Mediators Inflamm. 2012;2012:762840. doi:http://dx.doi. org/10.1155/2012/762840.

Kolinko IaO. Stan providnykovoho aparatu ta mikrotsyr- kuliatornoho rusla sidnychnoho nerva shchura na somu dobu pislia dii zahalnoi hlybokoi hipotermii. Ukrainskyi morfolohichnyi almanakh. 2010;8(2):91–4.

Baylor K, Stecker MM. Peripheral nerve at extreme low temperatures 2: pharmacologic modulation of temperature effects. Cryobiology. 2009;59(1): 12–8. doi: 10.1016/j.cryobiol.2009.01.006.

Bennet L, Roelfsema V, George S, Dean JM, Emerald BS, Gunn AJ. The effect of cerebral hypothermia on white and grey matter injury induced by severe hypoxia in preterm fetal sheep. J Physiol. 2007;578:491–506.

Sahan OV, Popadynets OH, Ivanochko VM, et al. Osoblyvosti strukturnoi reaktsii deiakykh vydilnykh orha- niv na vplyv zahalnoi hlybokoi hipotermii: zb. mater. Vseukr. nauk.-prakt. konf. [«Morfolohichni aspekty anhiolohii»] (Ternopil, 24–25 zhovtnia 2013 r.). Ternopil, 2013:144–6.

Potiak OIu. Osoblyvosti deheneratsii zhuvalnykh m’iaziv pry kholodovii travmi. Visnyk problem biolohii i medytsyny. 2013;3,1(120):175–9.

Kondratiev TV, Myhre ES, Simonsen O, Nymark TB, Tveita T. Cardiovascular effects of epinephrine during rewarming from hypothermia in an intact animal model. J Appl Physiol. 2006;100(2):457–64.

Bezukh MS. Neirovehetatyvnaia blokada y hypotermyia v systeme neirokhyrurhycheskoho lechenyia bolnыkh s trav- moi cherepa y holovnoho mohzgha: dis. the doctor of medical sciences. Lviv, 1982. 437 p.

Aisha MD, NorAshikin MN, Sharanisa R, et al. Normal human osteoblast cells exerts an adaptive effect towards moderate hypothermia by retaining bone metabolism and cellular function in vitro. Abstract of European Calcified Tissue Society Congress 2013. Lisbon, 2013: PP193. doi: 10.1530/boneabs.1.PP193.

Bierens de Haan B, Wexler MR, Porat S, Nyska A, Teitelbaum A. The effects of cold upon bone growth: a preliminary study. Ann Plast Surg. 1996;16(6):509–15.

Lee KR, Chung SP, Park IC, Kim SH. Effect of induced and spontaneous hypothermia on survival time of uncontrolled hemorrhagic shock rat model. Yonsei Med J. 2002;43(4):511–17.

Mallet ML. Pathophysiology of accidental hypothermia. QJM. 2002;95(12):775–85.

Marx J. Rosen’s emergency: concepts and clinical practice. Mosby/Elsevier, 2006. 2239 p.

Patel JJ, Utting JC, Key ML, Orriss IR, Taylor SE, Whatling P, Arnett TR. Hypothermia inhibits osteoblast differentiation and bone formation but stimulates osteoclastogenesis. Exp Cell Res. 2012;318(17):2237–44. doi: 10.1016/j.yexcr.2012.06.021.

Myshchuk NE. Kholodovaia bolezn (hypotermyia). Medytsyna neotlozhnykh sostoianyi. 2006;4(5):42–7.

Tuli JS, Gilbert RC. Hypothermia in animals [web source]. http://www.hypothermia.org/ animalhypo.htm.

Long WB, Edlich RF, Winters KL, Britt LD. Cold injuries. J Long Term Eff Med Implants. 2005;15(1):67–78.

Aisha MD, Nor-Ashikin MN, Sharanisa R, et al. Moderate hypothermia induces growth arrest in normal human osteoblast cells but retained mitochondrial metabolism in vitro. Abstract of European Calcified Tissue Society Congress 2013. Lisbon, 2013:PР192. doi: 10.1530/boneabs.1.PP192.

Collins KJ, Exton-Smith AN, Dore C. Urban hypothermia: preferred temperature and thermal perception in old age. Br Med J. 1989;282(6259):175–7.

Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol. 1997;137(4):899–908.

Korzh M, Povorozniuk V, Diedukh N, Zupanets I. Osteoporoz: epydemyolohyia, klynyka, dyahnostyka, prfylaktyka y lechenye. Kharkov: Zolotyie stranytsy, 2002. 646 p.

Tkach HF. Vikovi osoblyvosti osteometrychnykh pokaznykiv skeleta tvaryn v umovakh vplyvu hiperhidratatsii orhanizmu. Ukrainskyi morfolohichnyi almanakh. 2010;8(1):101–4.

Poshelok D, Diedukh N, Malyshkina S. Vliyanie gipotermii na remodelirovanie trabekulyarnoy kosti kryis. Sb. statey po mat. XXXIII Mezhdunar. nauch.-prakt. konf. Sovremennaya meditsina: aktualnyie voprosyi. Novosibirsk, 2014;7(33):70–85.

Poshelok D, Malyshkina S. Strukturnaya organizatsiya kompaktnoy kosti posle obschey gipotermii. Tavricheskiy mediko-biologicheskiy vestnik. 2013;16(1):197–201.

Danzl DF, Pozos RS. Accidental hypothermia. N. Engl J Med. 1994;331:1756–60.

Wong KC. Physiology and pharmacology of hypothermia. West J Med. 1983;138:227–32.

Dmytrenko AS. Histo-, ultrastrukturni zminy hemomik- rotsyrkuliatornoho rusla (HMTsR) ta skeletnykh m’iaziv u ranni terminy pislia dii zahalnoi hlybokoi hipotermii. Visnyk morfolohii. 2003;2:294–5.

Dutchak UM. Morfofunktsionalnyi stan suhlobovoho khria- shcha na vysoti dii zahalnoi hlybokoi hipotermii. Visnyk morfolohii. 2003;2:229–30.

Abed E, Labelle D, Martineau C, Loghin A, Moreau R. Expression of transient receptor potential (TRP) channels in human and osteoblast-like cells. Mol Membr Biol. 2009;26(3):146–58. doi: 10.1080/09687680802612721.

Aisha MD, Nor-Ashikin MN, Sharaniza AB, et al. The effects of hypo- and hyperthermia on sparc in normal human osteoblast cells. Regenerative Research. 2012;1(1):62–5.

Meghji S, Maddi A, Vinayahah G. Osteoblasts respond to mild-heat stress by change in OPG/RANKI ratio. Amer Soc Bone Mineral Res. 2006;3(3):1155–8.

Ito A, Aoyama T, Iijima H, Nagai M, Yamaguchi S, Tajino J, Zhang X, Akiyama H, Kuroki H. Optimum temperature for extracellular matrix production by articular chondrocytes. Int J Hyperthermia. 2014;30(2):96–101. doi: 10.3109/02656736.2014.880857.

Ito A, Aoyama T, Tajino J, Nagai M, Yamaguchi S, Iijima H, Zhang X, Akiyama H, Kuroki H. Effects of the thermal environment on articular chondrocyte metabolism: a fundamental study to facilitate establishment of an effective thermotherapy for osteoarthritis. J Jpn Phys Ther Assoc. 2014;17(1):14–21. doi: 10.1298/jjpta.17.14.

Ito A, Aoyama T, Iijima H, Tajino J, Nagai M, Yamaguchi S, Zhang X, Kuroki H. Culture temperature affects redifferentiation and cartilaginous extracellular matrix formation in dedifferentiated human chondrocytes. J Orthop Res. 2015;33(5):633–9. doi: 10.1002/jor.22808.

Ito A, Nagai M, Tajino J, Yamaguchi S, Iijima H, Zhang X, Aoyama T, Kuroki H. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems. PLoS One. 2015;10(5):e0128082. doi: 10.1371/journal.pone.0128082.

Kocaoglu B, Martin J, Wolf B, Karahan M, Amendola A. The effect of irrigation solution at different temperatures on articular cartilage metabolism. Arthroscopy. 2011;27(4):526–31. doi: 10.1016/j.arthro.2010.10.019.

Tihanov VI, Voronin NI, Gritsun AV, et al. Protsessyi lipidnogo obmena v hryaschevoy tkani eksperimen- talnyih zhivotnyih pri holodovoy adaptatsii i vozbuzhde- nii perifericheskih m-holinoretseptorov. Dalnevostochnyiy meditsinskiy zhurnal. 2003;(1):26–9.

Shabanov PD. Gipoksiya i antigipoksantyi. Vestnik Rossiyskoy voenno-meditsinskoy akademii. 2003;1(9):111–21.

Kaznacheev VP, Kulikov VYu, Kolesnikov LI Antiokislitelnaya aktivnost krovi u prishlogo i korennogo naseleniya Kraynego Severa. Mat. Ros. nauch. konf. Me hanizmyi adaptatsii cheloveka na territorii stroitelstva BAMa». Blagoveschensk: Vesti, 1993:20–2.

Voronin NI, Kirichenko VI. Holodovoe vozdeystvie na zhivyie organizmyi. Morfologicheskie izmeneniya v kostnoy tkani. Travmatologiya i ortopediya Rossii. 1995;(3):19–21.

Kireev AA. [Regeneration of bone tissue in cold injury in the treatment of conditions izotiorbaminom]. Abstract dis. the candidate of medical sciences. 14.00.22 “Traumatology and Orthopaedics”. Yakutsk, 2006. 21 p. [in Russian].

Malyishkina S, Bengus L, Nikolchenko O, Vishnyakova I. [Morphological characteristics of compact bone osteocytes in aged rats induced general mild hypothermia]. Aktualni pytannya medychnoyi nauky ta praktyky. Zb. nauk. prats DZ «ZMAPO MOZ Ukrayini». 2015;Vip.82,2,Kn.1:112–20. [in Russian].

Poshelok D, Malyishkina S, Nikolchenko O. [Features of the formation of colonies of mesenchymal bone marrow stromal cells of rats after hypothermia]. Universum: meditsina i farmakologiya: elektron. nauchn. zhurnal. Novosibirsk, 2014;10:11. [in Russian].

Sharapov OYu, Iontsev VI, Lemeschenko AV, Parfenov YuA Kolichestvennyie pokazateli soderzhaniya nekotoryih mik- roelementov v kostyah vistseralnogo cherepa kryis na fone vvedeniya antioksidanta. Fundamentalnyie nauki. 2012;(10):356–8.

Malishkina S, Poshelok D, Nikolchenko O, et al. Mineralniy sklad kompaktnoyi kistki u schurIv pislya zmodelovanoyi legkoyi gipotermiyi. Galitskiy likarskiy visnik. 2015;22(3):123–7.

Riesenfeld A. Compact bone changes in cold-exposed rats. Am J Phys Anthrop. 1982;4:111–2.

Steinberg B, Singh I, Mitchel O. The effects of cold-stress, hibernation and prolonged inactivity on bone denamics in the golden hamster. J Morphology. 1981;167(1):43–51.

Patterson-Buckendahl P, Kvetnansky R, Fukuhara K, Cizza G, Cann C. Regulation of plasma osteocalcin by corticosterone and norepinephrine during restraint stress. Bone. 1995;17(5);467–72.

Vavilova TP, Mitronin AV, Ostrovskaya IG, Gaverova YuG. Vliyanie emotsionalno-holodovogo stressa na fosforno-kaltsievyiy obmen v pulpe zubov kryis. Rossiyskaya stomatologiya. 2008;(1):12–4.

Pikalyuk VS, Mostovoy SO. Sovremennyie predstavleniya o biologii i funktsii kostnoy tkani. Tavricheskiy mediko-biologicheskiy vestnik. 2006;9(3):186–94.

Islam N, Chanda S, Ghosh TK, Mitra C. Cold stress facilitates calcium mobilization from bone in an ovariectomized rat model of osteoporosis. Jpn J Physiol. 1998;48(1):49–55.

Hochachka PW. Defense strategies against hypoxia and hypothermia. Science. 1986;231(4755):234–41.

Boutilier RG. Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol. 2001;204:3171–81.

Stefanovich P, Ezzell RM, Sheehan SJ, Tompkins RG, Yarmush ML, Toner M. Effects of hypothermia on the function, membrane integrity and cytoskeletal structure of hepatocytes. Cryobiology. 1995;32(4):389-403.

Islam MN, Chanda S, Mitra C. Effects of different intensities of cold stress on certain physiological phenomena related to skeletal health in a hypogonadal rat model. J Physiol Pharmacol. 2000;51(4 Pt 2):857-70.

Asanami S Shimono K. Hypothermia induces micronuclei in mouse bone marrow cells. Mutat Res. 1997;393(1-2):91-8.

Shutka BV, Popadynets OH, Ivanochko VM, Sahan OV. Morfolohichni zminy krovonosnykh sudyn, hemokapiliariv i parenkhimy prostaty na vysoti dii kholodovoho faktora ta na pershu dobu posthipotermichnoho period. Mat. II Vseukr. nauk. morfolohichnoi konferentsii “Karpovski chytannia”. Dnipropetrovsk: Porohy, 2005. 93 p.

Sunagawa T, Ishida O, Ikuta Y, Yasunaga Y, Ochi M. Role of simple cold storage in preventing growth plate impairment after replantation surgery in immature rats. J Reconstr Microsurg. 2005;21(7):483-9.

Patent 0149007 US. Selective delivery of cryogenic energy to intervertebral disc tissue and related methods of intradiscal hypothermia therapy / Pandiscio MJ.; Inventor: Allen Carl, Slingerlands, NY (US). № 10/653; 02.09.2003; 07.07.2005.

Issue

Section

DIGESTS AND REVIEWS

Most read articles by the same author(s)

1 2 3 4 5 6 > >>