ANALYSIS OF THE EFFECTIVENESS OF INDIRECT SPINAL CANAL DECOMPRESSION IN THE TREATMENT OF BURST FRACTURES AT THE THORACOLUMBAR JUNCTION

Authors

DOI:

https://doi.org/10.15674/0030-59872024313-21

Keywords:

Indirect decompression, ligamentotaxis, thoracolumbar junction, burst fractures, transpedicular fixation, traumatic stenosis

Abstract

Indirect decompression of the spinal canal through ligamentotaxis is one of the methods for remodeling the spinal canal in traumatic stenosis. Objective: To evaluate the effectiveness of indirect decompression of the spinal canal for different morphological types
of burst fractures of vertebral bodies at the thoracolumbar junction. Methods. A preoperative and postoperative analysis of computed tomography scans was performed on 59 patients who were treated at the«Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine» for burst fractures at the thoracolumbar junction. The criterion for the effectiveness of indirect decompression was the area of the spinal canal, measured at the level of injury in the zone of maximum compression. The grading of burst
fractures was performed using the classification by F. Magerl et al. (1994). Results. In the preoperative period, the median degree of stenosis in the group of patients was 43.47 % (95 % confidence interval
(CI): 37.53–46.22 %). For damage type A3.1, it was 36.9 % (95 % CI: 28.1‒40.5 %), for type A3.2 — 46.1 % (95 % CI: 32.1‒54.5 %), and for type A3.3 — 47.6 % (95 % CI: 37.5‒56.5 %). After surgical treatment, the degree of stenosis decreased by 20.14 % (95 % CI:
15.93‒21.56 %). For type A3.1, the effectiveness was 20.1 % (95 % CI: 9.5‒22.7 %), for type A3.2 — 15.2 % (95 % CI: 7.51‒17.3 %), and for type A3.3 — 21.7 % (95 % CI: 20.8‒26.4 %). The difference between types A3.2 and A3.3 was statistically significant (p = 0.0018).
It was found that indirect decompression is most effective with higher degrees of stenosis. For Grade I by D. Wolter (1988), the canalexpansion achieved was 7.07 % (95 % CI: 5.69‒8.65 %), for Grade II — 21.6 % (95 % CI: 20.4‒22.7 %), and for Grade III — 30.3 % (95 % CI: 27.0‒33.6 %). Conclusions. Closed remodeling of the spinal canal with transpedicular fixation and the effect of ligamentotaxis is an effective method for correcting traumatic spinal canal stenosis at the thoracolumbar junction. The effectiveness of the technique is determined by many factors, including the type of burst fracture, the initial degree of stenosis, and the level of injury.

Author Biographies

Oleksii Nekhlopochyn, Romodanov Neurosurgery Institute, Kyiv, Ukraine

MD, PhD

Vadim Verbov, Romodanov Neurosurgery Institute, Kyiv, Ukraine

MD, PhD

Ievgen Cheshuk, Romodanov Neurosurgery Institute, Kyiv, Ukraine

MD

Milan Vorodi, Romodanov Neurosurgery Institute, Kyiv, Ukraine

MD

References

  1. Ovalle, F. A., Ríos, E. C., & Balbuena, F. R. (2014). Incidence and functional evolution of traumatic injuries of the spine. Coluna/Columna, 13(3), 223–227. https://doi.org/10.1590/s1808-1851201413030r106
  2. Li, B., Sun, C., Zhao, C., Yao, X., Zhang, Y., Duan, H., Hao, J., Guo, X., Fan, B., Ning, G., & Feng, S. (2018). Epidemiological profile of thoracolumbar fracture (TLF) over a period of 10 years in Tianjin, China. The Journal of Spinal Cord Medicine, 42(2), 178–183. https://doi.org/10.1080/10790268.2018.1455018
  3. Jaiswal, N. K., Kumar, V., Puvanesarajah, V., Dagar, A., Prakash, M., Dhillon, M., & Dhatt, S. S. (2020). Necessity of direct decompression for thoracolumbar Junction burst fractures with neurological compromise. World Neurosurgery, 142, e413–e419. https://doi.org/10.1016/j.wneu.2020.07.069
  4. Dandurand, C., Öner, C. F., Hazenbiller, O., Bransford, R. J., Schnake, K., Vaccaro, A. R., Benneker, L. M., Vialle, E., Schroeder, G. D., Rajasekaran, S., El Skarkawi, M., Kanna, R. M., Aly, M., Holas, M., Canseco, J. A., Muijs, S., Popescu, E. C., Tee, J. W., Camino Willhuber, G., … Dvorak, M. F. (2024). Understanding decision making as it influences treatment in thoracolumbar burst fractures without neurological deficit: Conceptual framework and methodology. Global Spine Journal, 14(1_suppl), 8S–16S. https://doi.org/10.1177/21925682231210183
  5. Montes Aguilar, O. J., Alaniz Sida, K. K., Dufoo Olvera, M., Ladewig Bernaldez, G. I., Oropeza Oropeza, E., Gómez Flores, G., Pérez Rios, J. J., Miguel Zambrano, A., Ochoa González, M. V., & Tirado Ornelas, H. A. (2022). Spinal canal invasion as a predictor of neurological deficit in traumatic vertebral burst fractures. Surgical Neurology International, 13, 428. https://doi.org/10.25259/sni_564_2022
  6. Goulet, J., Richard Denis, A., Petit, Y., Diotalevi, L., & Mac Thiong, J. (2020). Morphological features of thoracolumbar burst fractures associated with neurological outcome in thoracolumbar traumatic spinal cord injury. European Spine Journal, 29(10), 2505–2512. https://doi.org/10.1007/s00586-020-06420-9
  7. Shin, S., Lee, S., Kim, J., Jung, J., Lee, S., Lee, G., Ju Moon, B., & Lee, J. (2020). Thoracolumbar burst fractures in patients with neurological deficit: Anterior approach versus posterior percutaneous fixation with laminotomy. Journal of Clinical Neuroscience, 75, 11–18. https://doi.org/10.1016/j.jocn.2020.03.0468. Vaccaro, A. R., Zeiller, S. C., Hulbert, R. J., Anderson, P. A., Harris, M., Hedlund, R., Harrop, J., Dvorak, M., Wood, K., Fehlings, M. G., Fisher, C., Lehman, R. A., Jr., Anderson, D. G., Bono, C. M., Kuklo, T., & Oner, F. C. (2005). The thoracolumbar injury severity score: a proposed treatment algorithm. J Spinal Disord Tech, 18(3), 209–215. https://doi.org/10.1097/01.bsd.0000164608.63526.56
  8. Kepler, C. K., Vaccaro, A. R., Schroeder, G. D., Koerner, J. D., Vialle, L. R., Aarabi, B., Rajasekaran, S., Bellabarba, C., Chapman, J. R., Kandziora, F., Schnake, K. J., Dvorak, M. F., Reinhold, M., & Oner, F. C. (2015). The thoracolumbar AOSpine injury score. Global Spine Journal, 6(4), 329–334. https://doi.org/10.1055/s-0035-1563610
  9. Müller, U., Berlemann, U., Sledge, J., & Schwarzenbach, O. (1999). Treatment of thoracolumbar burst fractures without neurologic deficit by indirect reduction and posterior instrumentation: Bisegmental stabilization with monosegmental fusion. European Spine Journal, 8(4), 284—289. https://doi.org/10.1007/s005860050175
  10. Yoshihara H. (2017). Indirect decompression in spinal surgery. Journal of Clinical Neuroscience, 44, 63–68. https://doi.org/10.1016/j.jocn.2017.06.061
  11. Verheyden, A. P., Spiegl, U. J., Ekkerlein, H., Gercek, E., Hauck, S., Josten, C., Kandziora, F., Katscher, S., Kobbe, P., Knop, C., Lehmann, W., Meffert, R. H., Müller, C. W., Partenheimer, A., Schinkel, C., Schleicher, P., Scholz, M., Ulrich, C., & Hoelzl, A. (2018). Treatment of fractures of the thoracolumbar spine: Recommendations of the spine section of the German society for orthopaedics and trauma (DGOU). Global Spine Journal, 8(2_suppl), 34S–45S. https://doi.org/10.1177/2192568218771668
  12. Yi, L., Jingping, B., Gele, J., Wu, T., & Baoleri, X. (2006). Operative versus non-operative treatment for thoracolumbar burst fractures without neurological deficit. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd005079.pub2
  13. Chou, T., Tsuang, F., Hsu, Y., & Chai, C. L. (2023). Surgical versus non-surgical treatment for thoracolumbar burst fractures without neurological deficit: A systematic review and meta-analysis. Global Spine Journal, 14(2), 740–749. https://doi.org/10.1177/21925682231181875
  14. Magerl, F., Aebi, M., Gertzbein, S. D., Harms, J., & Nazarian, S. (1994). A comprehensive classification of thoracic and lumbar injuries. European Spine Journal, 3(4), 184–201. https://doi.org/10.1007/bf02221591
  15. Nekhlopochyn, O. S., Cheshuk, Y. V., & Vorodi, M. V. (2022). Traumatic injuries of the thoracolumbar junction. Classification by Friedrich P. Magerl et al. Trauma, 23(3), 4–22. https://doi.org/10.22141/1608-1706.3.23.2022.895
  16. Vaccaro, A. R., Oner, C., Kepler, C. K., Dvorak, M., Schnake, K., Bellabarba, C., Reinhold, M., Aarabi, B., Kandziora, F., Chapman, J., Shanmuganathan, R., Fehlings, M., & Vialle, L. (2013). AOSpine thoracolumbar spine injury classification system. Spine, 38(23), 2028–2037. https://doi.org/10.1097/brs.0b013e3182a8a381
  17. Rupp, R., Biering Sørensen, F., Burns, S. P., Graves, D. E., Guest, J., Jones, L., Read, M. S., Rodriguez, G. M., Schuld, C., Tansey MD, K. E., Walden, K., & Kirshblum, S. (2021). International standards for neurological classification of spinal cord injury. Topics in Spinal Cord Injury Rehabilitation, 27(2), 1–22. https://doi.org/10.46292/sci2702-1
  18. Wolter, D. (1988). Klassifikation und Prognose von Wirbelsäulenverletzungen. Verhandlungen der Deutschen Gesellschaft für Chirurgie, 237–243. https://doi.org/10.1007/978-3-642-48161-1_51
  19. Dijkers, M. (2010). Comparing quantification of pain severity by verbal rating and numeric rating scales. J Spinal Cord Med, 33(3), 232–242. https://doi.org/10.1080/10790268.2010.11689700
  20. Vaccaro, A. R., Lim, M. R., Hurlbert, R. J., Lehman, R. A., Harrop, J., Fisher, D. C., Dvorak, M., Anderson, D. G., Zeiller, S. C., Lee, J. Y., Fehlings, M. G., & Öner, F. C. (2006). Surgical decision making for unstable thoracolumbar spine injuries. Journal of Spinal Disorders & Techniques, 19(1), 1–10. https://doi.org/10.1097/01.bsd.0000180080.59559.45
  21. Sharif, S., Shaikh, Y., Yaman, O., & Zileli, M. (2021). Surgical techniques for thoracolumbar spine fractures: WFNS spine committee recommendations. Neurospine, 18(4), 667–680. https://doi.org/10.14245/ns.2142206.253
  22. Diniz, J. M., & Botelho, R. V. (2017). Is fusion necessary for thoracolumbar burst fracture treated with spinal fixation? A systematic review and meta-analysis. Journal of Neurosurgery: Spine, 27(5), 584–592. https://doi.org/10.3171/2017.1.spine161014
  23. Lan, T., Chen, Y., Hu, S., Li, A., & Yang, X. (2017). Is fusion superior to non-fusion for the treatment of thoracolumbar burst fracture? A systematic review and meta-analysis. Journal of Orthopaedic Science, 22(5), 828–833. https://doi.org/10.1016/j.jos.2017.05.014
  24. Abudou, M., Chen, X., Kong, X., & Wu, T. (2013). Surgical versus non-surgical treatment for thoracolumbar burst fractures without neurological deficit. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd005079.pub3
  25. Kuner, E. H., Schlickewei, W., Kuner, A., & Hauser, U. (1997). Restoration of the spinal canal by the internal fixator and remodeling. European Spine Journal, 6(6), 417–422. https://doi.org/10.1007/bf01834072
  26. Diotalevi, L., Bailly, N., Wagnac, É., Mac Thiong, J., Goulet, J., & Petit, Y. (2020). Dynamics of spinal cord compression with different patterns of thoracolumbar burst fractures: Numerical simulations using finite element modelling. Clinical Biomechanics, 72, 186–194. https://doi.org/10.1016/j.clinbiomech.2019.12.023
  27. Tang, P., Long, A., Shi, T., Zhang, L., & Zhang, L. (2016). Analysis of the independent risk factors of neurologic deficit after thoracolumbar burst fracture. Journal of Orthopaedic Surgery and Research, 11(1). https://doi.org/10.1186/s13018-016-0448-0
  28. Leferink, V., Nijboer, J., Zimmerman, K., Veldhuis, E., Ten Vergert, E., & Ten Duis, H. (2003). Burst fractures of the thoracolumbar spine: Changes of the spinal canal during operative treatment and follow-up. European Spine Journal, 12(3), 255–260. https://doi.org/10.1007/s00586-002-0499-2
  29. Dai L. Y. (2001). Remodeling of the spinal canal after thoracolumbar burst fractures. Clin Orthop Relat Res(382), 119-123. https://doi.org/10.1097/00003086-200101000-00018
  30. Zhu, Q., Shi, F., Cai, W., Bai, J., Fan, J., & Yang, H. (2015). Comparison of anterior versus posterior approach in the treatment of thoracolumbar fractures: A systematic review. International Surgery, 100(6), 1124–1133. https://doi.org/10.9738/intsurg-d-14-00135.1
  31. Vicenty, J. C., Saavedra, F. M., Vigo, J. A., & Pastrana, E. A. (2018). Circumferential Stabilization of the Thoracolumbar Junction Via Posterior-Only Approach for the Management of Burst Fractures. Puerto Rico health sciences journal, 37(4), 224–229.
  32. Ren, E. H., Deng, Y. J., Xie, Q. Q., Li, W. Z., Shi, W. D., Ma, J. L., Wang, J., & Kang, X. W. (2019). Anterior versus posterior decompression for the treatment of thoracolumbar fractures with spinal cord injury:a Meta-analysis. Zhongguo Gu Shang, 32(3), 269–277. https://doi.org/10.3969/j.issn.1003-0034.2019.03.015
  33. Rasmussen, P. A., Rabin, M. H., Mann, D. C., Perl, J. R., Lorenz, M. A., & Vrbos, L. A. (1994). Reduced transverse spinal area secondary to burst fractures: Is there a relationship to Neurologic injury? Journal of Neurotrauma, 11(6), 711–720. https://doi.org/10.1089/neu.1994.11.711
  34. Hashimoto, T., Kaneda, K., & Abumi, K. (1988). Relationship between traumatic spinal canal stenosis and Neurologic deficits in thoracolumbar burst fractures. Spine, 13(11), 1268–1272. https://doi.org/10.1097/00007632-198811000-00011
  35. Shuman, W., Rogers, J., Sickler, M., Hanson, J., Crutcher, J., King, H., & Mack, L. (1985). Thoracolumbar burst fractures: CT dimensions of the spinal canal relative to postsurgical improvement. American Journal of Roentgenology, 145(2), 337–341. https://doi.org/10.2214/ajr.145.2.337
  36. Lu, J., Chen, Y., Hu, M., & Sun, C. (2022). Systematic review and meta-analysis of the effect of using percutaneous pedicle screw internal fixation for thoracolumbar fractures. Annals of Palliative Medicine, 11(1), 250–259. https://doi.org/10.21037/apm-21-3736
  37. Walker, C. T., Xu, D. S., Godzik, J., Turner, J. D., Uribe, J. S., & Smith, W. D. (2018). Minimally invasive surgery for thoracolumbar spinal trauma. Annals of Translational Medicine, 6(6), 102–102. https://doi.org/10.21037/atm.2018.02.10
  38. Aono, H., Tobimatsu, H., Ariga, K., Kuroda, M., Nagamoto, Y., Takenaka, S., Furuya, M., & Iwasaki, M. (2016). Surgical outcomes of temporary short-segment instrumentation without augmentation for thoracolumbar burst fractures. Injury, 47(6), 1337–1344. https://doi.org/10.1016/j.injury.2016.03.003

How to Cite

Nekhlopochyn, . O., Verbov, V. ., Cheshuk, . I. ., & Vorodi, M. . (2024). ANALYSIS OF THE EFFECTIVENESS OF INDIRECT SPINAL CANAL DECOMPRESSION IN THE TREATMENT OF BURST FRACTURES AT THE THORACOLUMBAR JUNCTION. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3), 13–21. https://doi.org/10.15674/0030-59872024313-21

Issue

Section

ORIGINAL ARTICLES