OSTEOARTHRITIS AND CARDIOVASCULAR DISEASES: ETIOLOGICAL AND CLINICAL-PATHOGENETIC RELATIONSHIPS, TREATMENT AND PREVENTION

Authors

  • Olexii Korzh Kharkiv National Medical University. Ukraine, Ukraine
  • Iryna Korzh

DOI:

https://doi.org/10.15674/0030-59872024288-98

Keywords:

Osteoarthritis, cardiovascular diseases, comorbidity

Abstract

In recent years, numerous studies have shown a link between osteoarthritis (OA) and cardiovascular disease (CVD). Comorbidity of one of these diseases is directly and significantly associated with an increased risk of developing another. Objective. Carrying out a critical analysis of the results of
studies related to the relationship between CVD and OA, as well as an assessment of the possibilities of their joint prevention and treatment. Methods. Publications from the Google search system, electronic databases PubMed, Scopus, Web of Science and other relevant sources of scientific and medical information were analyzed. The results. The main pathogenetic explanation of the relationship between CVD and OA is the presence of systemic,
slowly progressing inflammation, which becomes especially important in patients of older age groups. The similarity of the composition of pro-inflammatory cytokines in the development of both CVD and OA enhances pathological changes in the structure of comorbidity. CVD and OA share common pathological mechanisms, such as oxidative and metabolic stress, molecular factors of endothelial dysfunction, hyperlipidemia, and systemic and local vascular remodeling. At the same time, it was established that OA develops against the background
of CVD risk factors and progresses along with their accumulation. Special care should be taken when prescribing non-steroidal anti-inflammatory drugs (NSAIDs). The appointment of systemic forms of NSAIDs is not recommended for patients
with high and very high cardiovascular risk. Conclusions. In patients with both conditions, the risk of one is directly related to an increased risk of the other. Further study of the role of comorbidities
in the pathogenesis of OA will expand the understanding of the integration of cardiovascular risk factors. These facts provide prospects for further studying the role of comorbidities in the pathogenesis of OA, expanding the understanding
of the integration of cardiovascular risk factors and successful cardiovascular prevention and treatment of OA.

Author Biographies

Olexii Korzh, Kharkiv National Medical University. Ukraine

MD, Prof.

Iryna Korzh

MD, PhD

References

  1. Mensah, G. A., Fuster, V., Murray, C. J. L., & Roth, G. A. (2023). Global Burden of Cardiovascular Diseases and Risks
  2. Collaborators. Global Burden of Cardiovascular Diseases and Risks, 1990-2022. J Am Coll Cardiol., 82(25), 2350-2473.
  3. doi:10.1016/j.jacc.2023.11.007
  4. Miao, Q., Zhang, Y., Miao, Q., Yang, X., Zhang, F., Yu, Y., & Li, D. (2020). Sudden death from ischemic heart disease
  5. while driving: Cardiac pathology, clinical characteristics, and countermeasures. Medical Science Monitor, 27. doi:10.12659/
  6. msm.929212
  7. (2023). GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and
  8. projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol., 5(9), e508-e522.
  9. doi:10.1016/S2665-9913(23)00163-7
  10. Englund, M. (2023). Osteoarthritis, part of life or a curable disease? A bird's-eye view. Journal of Internal Medicine,
  11. (6), 681-693. doi:10.1111/joim.13634
  12. Geczy, Q. E., Thirumaran, A. J., Carroll, P. R., McLachlan, A. J., & Hunter, D. J. (2023). What is the most effective
  13. and safest non-steroidal anti-inflammatory drug for treating osteoarthritis in patients with comorbidities? Expert Opinion
  14. on Drug Metabolism & Toxicology, 19(10), 681-695. doi:10.1080/17425255.2023.2267424
  15. Wang, H., Bai, J., He, B., Hu, X., & Liu, D. (2016). Osteoarthritis and the risk of cardiovascular disease: A meta-analysis
  16. of observational studies. Scientific Reports, 6(1). doi:10.1038/srep39672
  17. Berenbaum, F. (2011). Diabetes-induced osteoarthritis: From a new paradigm to a new phenotype. Annals of the Rheumatic Diseases, 70(8), 1354-1356. doi:10.1136/ard.2010.146399
  18. Birtwhistle, R., Morkem, R., Peat, G., Williamson, T., Green, M. E., Khan, S., & Jordan, K. P. (2015). Prevalence and management of osteoarthritis in primary care: An epidemiologic cohort study from the Canadian primary care Sentinel surveillance network. CMAJ Open, 3(3), E270-E275. doi:10.9778/cmajo.20150018
  19. Marshall, D. A., Liu, X., Barnabe, C., Yee, K., Faris, P. D., Barber, C., … Lix, L. (2019). Existing comorbidities in people
  20. with osteoarthritis: A retrospective analysis of a populationbased cohort in Alberta, Canada. BMJ Open, 9(11),
  21. e033334. doi:10.1136/bmjopen-2019-033334
  22. Roubille, C., Coste, J., Sellam, J., Rat, A., Guillemin, F., & Roux, C. H. (2021). Association of baseline cardiovascular
  23. diseases with 5-Year knee and hip osteoarthritis progression in non-obese patients: Data from the KHOALA cohort.
  24. Journal of Clinical Medicine, 10(15), 3353. doi:10.3390/jcm10153353
  25. Francisco, V., Ruiz-Fernández, C., Pino, J., Mera, A., GonzálezGay, M. A., Gómez, R., … Gualillo, O. (2019). Adipokines:
  26. Linking metabolic syndrome, the immune system, and arthritic diseases. Biochemical Pharmacology, 165, 196-206.
  27. doi:10.1016/j.bcp.2019.03.030
  28. Smith, K. B., & Smith, M. S. (2016). Obesity statistics. Primary Care: Clinics in Office Practice, 43(1), 121-135. doi:10.1016/j.pop.2015.10.001
  29. Courties, A., Gualillo, O., Berenbaum, F., & Sellam, J. (2015). Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis and Cartilage, 23(11), 1955-1965. doi:10.1016/j.joca.2015.05.016
  30. Belluzzi, E., El Hadi, H., Granzotto, M., Rossato, M., Ramonda, R., Macchi, V., … Favero, M. (2017). Systemic
  31. and local adipose tissue in knee osteoarthritis. Journal of Cellular Physiology, 232(8), 1971-1978. doi:10.1002/jcp.25716
  32. Lee, B., Yang, S., Kwon, S., Choi, K., & Kim, W. (2019). Association between metabolic syndrome and knee osteoarthritis:
  33. A cross-sectional nationwide survey study. Journal of Rehabilitation Medicine, 0. doi:10.2340/16501977-2561
  34. Niu, J., Clancy, M., Aliabadi, P., Vasan, R., & Felson, D. T. (2017). Metabolic syndrome, its components, and knee
  35. osteoarthritis: The Framingham osteoarthritis study. Arthritis & Rheumatology, 69(6), 1194-1203. doi:10.1002/art.40087
  36. Wang, H., Bai, J., He, B., Hu, X., & Liu, D. (2016). Osteoarthritis and the risk of cardiovascular disease: A meta-analysis
  37. of observational studies. Scientific Reports, 6(1). doi:10.1038/srep39672
  38. Cleveland, R., Alvarez, C., Schwartz, T., Losina, E., Renner, J., Jordan, J., & Callahan, L. (2019). The impact of painful knee
  39. osteoarthritis on mortality: A community-based cohort study with over 24 years of follow-up. Osteoarthritis and Cartilage,
  40. (4), 593-602. doi:10.1016/j.joca.2018.12.008
  41. Misra, D., Fielding, R. A., Felson, D. T., Niu, J., Brown, C., & Nevitt, M. (2019). Risk of knee osteoarthritis with obesity,
  42. Sarcopenic obesity, and Sarcopenia. Arthritis & Rheumatology, 71(2), 232-237. doi:10.1002/art.40692
  43. Suh, D., Han, K., Hong, J., Park, J., Bae, J., Moon, Y., & Kim, J. (2016). Body composition is more closely related
  44. to the development of knee osteoarthritis in women than men: A cross-sectional study using the fifth Korea national
  45. health and nutrition examination survey (KNHANES V-1, 2). Osteoarthritis and Cartilage, 24(4), 605-611. doi:10.1016/j.
  46. joca.2015.10.011
  47. Hawker, G. A., Croxford, R., Bierman, A. S., Harvey, P. J., Ravi, B., Stanaitis, I., & Lipscombe, L. L. (2014). All-cause
  48. mortality and serious cardiovascular events in people with hip and knee osteoarthritis: A population based cohort
  49. study. PLoS ONE, 9(3), e91286. doi:10.1371/journal.pone.0091286
  50. Rushton, C., & Kadam, U. (2014). Impact of non-cardiovascular disease comorbidity on cardiovascular disease
  51. symptom severity: A population-based study. International Journal of Cardiology, 175(1), 154-161. doi:10.1016/j.ijcard.2014.05.001
  52. Prior, J. A., Jordan, K. P., & Kadam, U. T. (2014). Associations between cardiovascular disease severity, osteoarthritis
  53. Co-morbidity and physical health: A population-based study. Rheumatology, 53(10), 1794-1802. doi:10.1093/rheumatology/
  54. keu175
  55. Haywood, L., McWilliams, D. F., Pearson, C. I., Gill, S. E., Ganesan, A., Wilson, D., & Walsh, D. A. (2003). Inflammation
  56. and angiogenesis in osteoarthritis. Arthritis & Rheumatism, 48(8), 2173-2177. doi:10.1002/art.11094
  57. Dahaghin, S., Bierma-Zeinstra, S. M., Koes, B. W., Hazes, J. M., & Pols, H. A. (2007). Do metabolic factors add to the
  58. effect of overweight on hand osteoarthritis? The Rotterdam study. Annals of the Rheumatic Diseases, 66(7), 916-920.
  59. doi:10.1136/ard.2005.045724
  60. Cominacini, L., Rigoni, A., Pasini, A. F., Garbin, U., Davoli, A., Campagnola, M., … Sawamura, T. (2001). The binding
  61. of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric
  62. oxide in endothelial cells through an increased production of superoxide. Journal of Biological Chemistry, 276(17), 13750-
  63. doi:10.1074/jbc.m010612200
  64. Nishimura, S., Akagi, M., Yoshida, K., Hayakawa, S., Sawamura, T., Munakata, H., & Hamanishi, C. (2004). Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-κb. Osteoarthritis and Cartilage, 12(7), 568-576. doi:10.1016/j.joca.2004.04.005
  65. Hashimoto, K., Mori, S., Oda, Y., Nakano, A., Sawamura, T., & Akagi, M. (2016). Lectin-like oxidized low density lipoprotein receptor 1-deficient mice show resistance to instability-induced osteoarthritis. Scandinavian Journal of Rheumatology, 45(5), 412-422. doi:10.3109/03009742.2015.1135979
  66. Farnaghi, S., Prasadam, I., Cai, G., Friis, T., Du, Z., Crawford, R., … Xiao, Y. (2016). Protective effects of mitochondria-
  67. targeted antioxidants and statins on cholesterolinduced osteoarthritis. The FASEB Journal, 31(1), 356-367. doi:10.1096/
  68. fj.201600600r
  69. Choi, W., Lee, G., Song, W., Koh, J., Yang, J., Kwak, J., … Chun, J. (2019). The CH25H–CYP7B1–RORα axis of cholesterol
  70. metabolism regulates osteoarthritis. Nature, 566(7743), 254-258. doi:10.1038/s41586-019-0920-1
  71. De Munter, W., Geven, E., Blom, A., Walgreen, B., Helsen, M., Joosten, L., … Van Lent, P. (2017). Synovial macrophages
  72. promote TGF-β signaling and protect against influx of S100A8/S100A9-producing cells after intra-articular injections of oxidized low-density lipoproteins. Osteoarthritis and Cartilage, 25(1), 118-127. doi:10.1016/j.joca.2016.07.020
  73. Harrison, C., Henderson, J., Miller, G., & Britt, H. (2016). The prevalence of complex multimorbidity in Australia. Australian and New Zealand Journal of Public Health, 40(3), 239-244. doi:10.1111/1753-6405.12509
  74. Pastraigus, C., Ancuta, C., Miu, S., Ancuta, E., & Chirieac, R. (2012). Knee osteoarthritis, dyslipidemia syndrome and
  75. exercise. Rev Med Chir Soc Med Nat Iasi., 116(2), 481-486.
  76. Anyfanti, P., Gkaliagkousi, E., Triantafyllou, A., Koletsos, N., Gavriilaki, E., Galanopoulou, V., … Douma, S. (2020). Hypertension in rheumatic diseases: Prevalence, awareness, treatment, and control rates according to current hypertension guidelines. Journal of Human Hypertension, 35(5), 419-427. doi:10.1038/s41371-020-0348-y
  77. Wallace, I. J., Worthington, S., Felson, D. T., Jurmain, R. D., Wren, K. T., Maijanen, H., … Lieberman, D. E. (2017). Knee
  78. osteoarthritis has doubled in prevalence since the mid-20th century. Proceedings of the National Academy of Sciences,
  79. (35), 9332-9336. doi:10.1073/pnas.1703856114
  80. Pengpid, S., & Peltzer, K. (2017). Multimorbidity in chronic conditions: Public primary care patients in four Greater
  81. Mekong countries. International Journal of Environmental Research and Public Health, 14(9), 1019. doi:10.3390/
  82. ijerph14091019
  83. Ching, K., Houard, X., Berenbaum, F., & Wen, C. (2021). Hypertension meets osteoarthritis — revisiting the vascular
  84. aetiology hypothesis. Nature Reviews Rheumatology, 17(9), 533-549. doi:10.1038/s41584-021-00650-x
  85. Xie, Y., Zhou, W., Zhong, Z., Zhao, Z., Yu, H., Huang, Y., & Zhang, P. (2020). Metabolic syndrome, hypertension, and
  86. hyperglycemia were positively associated with knee osteoarthritis, while dyslipidemia showed no association with
  87. knee osteoarthritis. Clinical Rheumatology, 40(2), 711-724. doi:10.1007/s10067-020-05216-y
  88. Bally, M., Dendukuri, N., Rich, B., Nadeau, L., Helin-Salmivaara, A., Garbe, E., & Brophy, J. M. (2017). Risk of acute
  89. myocardial infarction with NSAIDs in real world use: Bayesian meta-analysis of individual patient data. BMJ, j1909. doi:10.1136/bmj.j1909
  90. Krotz, F., & Struthmann, L. (2010). A review on the risk of myocardial infarction associated with the NSAID Diclofenac.
  91. Cardiovascular & Hematological Disorders-Drug Targets, 10(1), 53-65. doi:10.2174/187152910790780041
  92. Stewart, R. A., Held, C., Hadziosmanovic, N., Armstrong, P. W., Cannon, C. P., Granger, C. B., … White, H. D. (2017). Physical activity and mortality in patients with stable coronary heart disease. Journal of the American College of Cardiology,
  93. (14), 1689-1700. doi:10.1016/j.jacc.2017.08.017
  94. Atiquzzaman, M., Karim, M. E., Kopec, J., Wong, H., & Anis, A. H. (2019). Role of nonsteroidal antiinflammatory drugs
  95. in the association between osteoarthritis and cardiovascular diseases: A longitudinal study. Arthritis & Rheumatology,
  96. (11), 1835-1843. doi:10.1002/art.41027
  97. Bindu, S., Mazumder, S., & Bandyopadhyay, U. (2020). Non -steroidal anti-inflammatory drugs (NSAIDs) and organ
  98. damage: A current perspective. Biochemical Pharmacology, 180, 114147. doi:10.1016/j.bcp.2020.114147
  99. Ungprasert, P., Srivali, N., & Thongprayoon, C. (2015). Nonsteroidal anti-inflammatory drugs and risk of incident
  100. heart failure: A systematic review and meta-analysis of observational studies. Clinical Cardiology, 39(2), 111-118.
  101. doi:10.1002/clc.22502
  102. Cooper, C., Chapurlat, R., Al-Daghri, N., Herrero-Beaumont, G., Bruyère, O., Rannou, F., … Reginster, J. (2019). Safety
  103. of oral non-selective non-steroidal anti-inflammatory drugs in osteoarthritis: What does the literature say? Drugs & Aging,
  104. (S1), 15-24. doi:10.1007/s40266-019-00660-1
  105. Majeed, M. H., Ali, A. A., & Khalil, H. A. (2019). A review of the pharmacological management of chronic pain in patients with heart failure. Innov Clin Neurosci., 16(11), 25-27.
  106. Ungprasert, P., Srivali, N., & Kittanamongkolchai, W. (2015). Non-steroidal anti-inflammatory drugs and risk of heart failure exacerbation: A systematic review and meta-analysis. European Journal of Internal Medicine, 26(9), 685-690. doi:10.1016/j.ejim.2015.09.012
  107. Hu, Y., Yelehe-Okouma, M., Ea, H., Jouzeau, J., & Reboul, P. (2017). Galectin-3: A key player in arthritis. Joint Bone Spine,
  108. (1), 15-20. doi:10.1016/j.jbspin.2016.02.029
  109. Gehlken, C., Suthahar, N., Meijers, W. C., & De Boer, R. A. (2018). Galectin-3 in heart failure. Heart Failure Clinics,
  110. (1), 75-92. doi:10.1016/j.hfc.2017.08.009
  111. Zhong, X., Qian, X., Chen, G., & Song, X. (2019). The role of galectin-3 in heart failure and cardiovascular disease. Clinical
  112. and Experimental Pharmacology and Physiology, 46(3), 197-203. doi:10.1111/1440-1681.13048
  113. Wu, C., Lv, Z., Li, X., Zhou, X., Mao, W., & Zhu, M. (2021). Galectin-3 in predicting mortality of heart failure: A systematic
  114. review and meta-analysis. The Heart Surgery Forum, 24(2), E327-E332. doi:10.1532/hsf.3547
  115. De Lange-Brokaar, B., Ioan-Facsinay, A., Van Osch, G., Zuurmond, A., Schoones, J., Toes, R., … Kloppenburg, M. (2012).
  116. Synovial inflammation, immune cells and their cytokines in osteoarthritis: A review. Osteoarthritis and Cartilage, 20(12),
  117. -1499. doi:10.1016/j.joca.2012.08.027
  118. Chou, W., Tsai, K., Hsieh, P., Wu, C., Jou, I., Tu, Y., & Ma, C. (2021). Galectin-3 facilitates inflammation and apoptosis
  119. in chondrocytes through upregulation of the TLR-4-mediated oxidative stress pathway in TC28a2
  120. scp> human chondrocyte cells. Environmental Toxicology, 37(3), 478-488. doi:10.1002/tox.23414
  121. Bannuru, R., Osani, M., Vaysbrot, E., Arden, N., Bennell, K., Bierma-Zeinstra, S., … McAlindon, T. (2019). OARSI guidelines
  122. for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and Cartilage, 27(11),
  123. -1589. doi:10.1016/j.joca.2019.06.011
  124. Lei, M., Guo, C., Wang, D., Zhang, C., & Hua, L. (2017). The effect of probiotic lactobacillus casei Shirota on knee
  125. osteoarthritis: A randomised double-blind, placebo-controlled clinical trial. Beneficial Microbes, 8(5), 697-704. doi:10.3920/
  126. bm2016.0207
  127. Arora, V., Singh, G., O-Sullivan, I., Ma, K., Natarajan Anbazhagan, A., Votta-Velis, E. G., … Im, H. (2021). Gut-microbiota
  128. modulation: The impact of the gut-microbiota on osteoarthritis. Gene, 785, 145619. doi:10.1016/j.gene.2021.145619
  129. Hao, X., Shang, X., Liu, J., Chi, R., Zhang, J., & Xu, T. (2021). The gut microbiota in osteoarthritis: Where do we stand
  130. and what can we do? Arthritis Research & Therapy, 23(1). doi:10.1186/s13075-021-02427-9
  131. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: Meta-analyses of individual participant data from randomised trials. (2013). The Lancet, 382(9894), 769-779. doi:10.1016/s0140-6736(13)60900-9
  132. Minhas, D., Nidhaan, A., & Husni, M. E. (2023). Recommendations for the use of nonsteroidal anti-inflammatory
  133. drugs and cardiovascular disease risk. Rheumatic Disease Clinics of North America, 49(1), 179-191. doi:10.1016/j.
  134. rdc.2022.08.006
  135. Kikuchi, S., Togo, K., Ebata, N., Fujii, K., Yonemoto, N., Abraham, L., & Katsuno, T. (2021). Database analysis on the
  136. relationships between nonsteroidal anti-inflammatory drug treatment variables and incidence of acute myocardial infarction in Japanese patients with osteoarthritis and chronic low back pain. Advances in Therapy, 38(3), 1601-1613. doi:10.1007/s12325-021-01629-6
  137. Thomas, S., Browne, H., Mobasheri, A., & Rayman, M. P. (2018). What is the evidence for a role for diet and nutrition
  138. in osteoarthritis? Rheumatology, 57(suppl_4), iv61-iv74.doi:10.1093/rheumatology/key011
  139. Angeli, F., Trapasso, M., Signorotti, S., Verdecchia, P., & Reboldi, G. (2018). Amlodipine and celecoxib for treatment
  140. of hypertension and osteoarthritis pain. Expert Review of Clinical Pharmacology, 11(11), 1073-1084. doi:10.1080/175124
  141. 2018.1540299
  142. Lo, G. H., McAlindon, T. E., Katz, J. N., Driban, J. B., Price, L. L., Eaton, C. B., … Suarez-Almazor, M. E. (2017). Systolic and
  143. pulse pressure associate with incident knee osteoarthritis: Data from the osteoarthritis initiative. Clinical Rheumatology,
  144. (9), 2121-2128. doi:10.1007/s10067-017-3656-z
  145. Deng, C., Bianchi, A., Presle, N., Moulin, D., Koufany, M., Guillaume, C., … Pizard, A. (2017). Eplerenone treatment
  146. alleviates the development of joint lesions in a new rat model of spontaneous metabolic-associated osteoarthritis. Annals
  147. of the Rheumatic Diseases, 77(2), 315-316. doi:10.1136/annrheumdis-2016-210700
  148. Li, Z., Liu, B., Zhao, D., Wang, B., Liu, Y., Zhang, Y., … Li, B. (2017). Protective effects of Nebivolol against interleukin-
  149. β (IL-1β)-induced type II collagen destruction mediated by matrix metalloproteinase-13 (MMP-13). Cell Stress and Chaperones, 22(6), 767-774. doi:10.1007/s12192-017-0805-x
  150. Gierman, L. M., Kühnast, S., Koudijs, A., Pieterman, E. J., Kloppenburg, M., Van Osch, G. J., … Zuurmond, A. (2013).
  151. Osteoarthritis development is induced by increased dietary cholesterol and can be inhibited by atorvastatin in APOE*3Leiden. CETP mice—a translational model for atherosclerosis. Annals of the Rheumatic Diseases, 73(5), 921-927. doi:10.1136/annrheumdis-2013-203248
  152. Hosseinzadeh, A., Bahrampour Juybari, K., Kamarul, T., & Sharifi, A. M. (2019). Protective effects of atorvastatin on high
  153. glucose-induced oxidative stress and mitochondrial apoptotic signaling pathways in cultured chondrocytes. Journal of
  154. Physiology and Biochemistry, 75(2), 153-162. doi:10.1007/s13105-019-00666-8
  155. Haj-Mirzaian, A., Mohajer, B., Guermazi, A., Conaghan, P. G., Lima, J. A., Blaha, M. J., … Demehri, S. (2019). Statin
  156. use and knee osteoarthritis outcome measures according to the presence of Heberden nodes: Results from the osteoarthritis initiative. Radiology, 293(2), 396-404. doi:10.1148/radiol.2019190557
  157. Veronese, N., Koyanagi, A., Stubbs, B., Cooper, C., Guglielmi, G., Rizzoli, R., … Reginster, J. (2019). Statin use and knee
  158. osteoarthritis outcomes: A longitudinal cohort study. Arthritis Care & Research, 71(8), 1052-1058. doi:10.1002/acr.23735
  159. Tanaka, T., Matsushita, T., Nishida, K., Takayama, K., Nagai, K., Araki, D., … Kuroda, R. (2019). Attenuation of osteoarthritis progression in mice following intra-articular administration of simvastatin-conjugated gelatin hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 13(3), 423-432.doi:10.1002/term.2804

How to Cite

Korzh, O. ., & Korzh, I. . (2024). OSTEOARTHRITIS AND CARDIOVASCULAR DISEASES: ETIOLOGICAL AND CLINICAL-PATHOGENETIC RELATIONSHIPS, TREATMENT AND PREVENTION. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 88–98. https://doi.org/10.15674/0030-59872024288-98

Issue

Section

DIGESTS AND REVIEWS