HISTOLOGICAL STRUCTURE OF THE RAT FEMURS AFTER FILLING OF DEFECTS IN THE DISTAL METAPHYSIS WITH 3D-PRINTED IMPLANTS BASED ON POLYLACTIDE AND TRICALCIUM PHOSPHATE IN COMBINATION WITH MESENCHYMAL STROMAL CELLS

Authors

  • Nataliya Ashukina Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-0478-7440
  • Nazar Gontar National Medical University, Kharkiv. Ukraine, Ukraine
  • Zinaida Danуshchuk Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0003-2968-3821
  • Olga Nikolchenko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-9808-9485
  • Yaryna Kaliyuzhna National Medical University, Kharkiv. Ukraine, Ukraine

DOI:

https://doi.org/10.15674/0030-59872023343-50

Keywords:

Rat model, bone defect, bone regeneration, additive technologies, polylactid, tricalcium phosphate, mesenchymal stromal cell

Abstract

Polylactide (PLA) frameworks printed on a 3D printer are used for filling the bone defects. The osteotropic properties of 3D-PLA can be improved by combining with tricalcium phosphate (TCP) and mesenchymal stromal cells (MSCs). Objective. Study the reconstruction in the rat femurs after implanting 3D-printed implants based on PLA and TCP (3D-I) in combination with cultured allogeneic MSCs into defects in the distal metaphysis. Methods. 48 white laboratory rats (age 5–6 months) were used, which were randomly divided into groups: Control — 3D-I; Experiment-I — 3D-I, saturated MSCs; Experiment II — 3D-I, with injection of 0.1‒0.2 ml of medium with MSCs into the area of surgical intervention 7 days after implantation. 15, 30 and 90 days after the operation, histological (with histomorphometry) studies were conducted. Results. The area of 3D-I decreased with time in all groups and connective and bone tissues formed in different ratios. 15 days after the surgery, in the Experiment-I group, the area of the connective tissue was 1.9 and 1.6 times greater (p<0.001) in comparison to the Control and Experiment II; 30 days it was greater 1.6 times (p < 0.001) and 1.4 times (p=0.001), respectively. 30 days after the surgery, the area of newly formed bone in the Experiment-I group was 2.2 times (p < 0.001) less than in the Control. On the contrary, in the Experiment-II, the area of newly formed bone was 1.5 and 3.3 times greater (p < 0.001) compared to Experiment-I and Control, respectively. Conclusions. The studied 3D-I with time after their implantation into the metaphyseal defects of the rats’ femurs are replaced by connective and bone tissues. The use of 3D-I, saturated MSCs, 15 and 30 days after the surgery, caused excessive formation of connective tissue and slower bone formation. Local injection of MSCs 7 days after the implantation of 3D-I caused to the formation of a larger area of newly bone 30th day after surgery compared to 3D-I alone and 3D-I with MSCs.

Author Biographies

Nataliya Ashukina, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Biol. Sci.

Nazar Gontar, National Medical University, Kharkiv. Ukraine

MD

Zinaida Danуshchuk, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD

Olga Nikolchenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Biol. Sci.

References

  1. Kazmirchuk, A., Yarmoliuk, Y., Lurin, I., Gybalo, R., Burianov, O., Derkach, S., & Karpenko, K. (2022). Ukraine’s Experience with Management of Combat Casualties Using NATO’s Four-Tier “Changing as Needed” Healthcare System. World Journal of Surgery, 46(12), 2858–2862. https://doi.org/10.1007/s00268-022-06718-3
  2. Feltri, P., Solaro, L., Di Martino, A., Candrian, C., Errani, C., & Filardo, G. (2022). Union, complication, reintervention and failure rates of surgical techniques for large diaphyseal defects: a systematic review and meta-analysis. Scientific reports, 12(1), 9098. https://doi.org/10.1038/s41598-022-12140-5
  3. Baldwin, P., Li, D. J., Auston, D. A., Mir, H. S., Yoon, R. S., & Koval, K. J. (2019). Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. Journal of orthopaedic trauma, 33(4), 203–213. https://doi.org/10.1097/BOT.0000000000001420
  4. Kobbe, P., Laubach, M., Hutmacher, D. W., Alabdulrahman, H., Sellei, R. M., & Hildebrand, F. (2020). Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft. European journal of medical research, 25(1), 70. https://doi.org/10.1186/s40001-020-00471-w.
  5. Brunello, G., Panda, S., Schiavon, L., Sivolella, S., Biasetto, L., & Del Fabbro, M. (2020). The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. Materials (Basel, Switzerland), 13(7), 1500. https://doi.org/10.3390/ma13071500
  6. Morris, M. T., Tarpada, S. P., & Cho, W. (2018). Bone graft materials for posterolateral fusion made simple: a systematic review. European spine journal, 27(8), 1856–1867. https://doi.org/10.1007/s00586-018-5511-6
  7. Haugen, H. J., Lyngstadaas, S. P., Rossi, F., & Perale, G. (2019). Bone grafts: which is the ideal biomaterial? Journal of clinical periodontology, 46 Suppl 21, 92–102. https://doi.org/10.1111/jcpe.13058.
  8. Stark, J. R., Hsieh, J., & Waller, D. (2019). Bone graft substitutes in single- or double-level anterior cervical discectomy and fusion: A Systematic Review. Spine, 44(10), E618–E628. https://doi.org/10.1097/BRS.0000000000002925
  9. Chen Y., Lin J., & Yu, X. (2020). Role of mesenchymal stem cells in bone fracture repair and regeneration. Chapter 7. In Ahmed H. K. El-Hashash (Eds.) Mesenchymal Stem Cells in Human Health and Diseases (pp. 127 ‒ 143). Academic Press. https://doi.org/10.1016/B978-0-12-819713-4.00007-4
  10. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G., & Morrison, S. J. (2014). Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell stem cell, 15(2), 154–168. https://doi.org/10.1016/j.stem.2014.06.008.
  11. Lin, H., Sohn, J., Shen, H., Langhans, M. T., & Tuan, R. S. (2019). Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials, 203, 96–110. https://doi.org/10.1016/j.biomaterials.2018.06.026li
  12. Science and society. Experts warn against bans on 3D printing. (2013). Science (New York, N.Y.), 342(6157), 439.
  13. Brachet, A., Bełżek, A., Furtak, D., Geworgjan, Z., Tulej, D., Kulczycka, K., Karpiński, R., Maciejewski, M., & Baj, J. (2023). Application of 3D Printing in Bone Grafts. Cells, 12(6), 859. https://doi.org/10.3390/cells12060859
  14. Chen, H., Han, Q., Wang, C., Liu, Y., Chen, B., & Wang, J. (2020). Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review. Frontiers in bioengineering and biotechnology, 8, 609. https://doi.org/10.3389/fbioe.2020.00609
  15. Dall'Ava, L., Hothi, H., Henckel, J., Di Laura, A., Tirabosco, R., Eskelinen, A., Skinner, J., & Hart, A. (2021). Osseointegration of retrieved 3D-printed, off-the-shelf acetabular implants. Bone & joint research, 10(7), 388–400. https://doi.org/10.1302/2046-3758.107.BJR-2020-0462.R1
  16. Habibovic, P., Gbureck, U., Doillon, C. J., Bassett, D. C., van Blitterswijk, C. A., & Barralet, J. E. (2008). Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 29(7), 944–953. https://doi.org/10.1016/j.biomaterials.2007.10.023
  17. Makarov, V., Dedukh, N., & Nikolchenko, O. (2021). Osteointegration of polylactide-basedimplants. Trauma, 22 (3), 58–62. https://doi.org/10.22141/1608-1706.3.22.2021.236325
  18. Hamad, K., Kaseem, M., Yang, H. W., Deri, F., & Ko, Y. G. (2015). Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9(5), 435-55. https://doi.org/110.3144/expresspolymlett.2015.42
  19. European Convention for the protection of vertebrate animals used for research and other scientific purposes. Strasbourg, 18 March 1986: official translation. Verkhovna Rada of Ukraine. (In Ukrainian). URL: http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=994_137. 21
  20. On protection of animals from cruel treatment: Law of Ukraine №3447-IV of February 21, 2006. The Verkhovna Rada ofUkraine. (In Ukrainian). URL: http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=3447-15
  21. Ashukinа, N. O., Vorontsov, P. M., Maltseva, V. Ye., Danуshchuk, Z. M., Nikolchenko, O. A., Samoylova, K. M., & Husak V. S. (2022). Morphology of the repair of critical size bone defects which filling allogeneic bone implants in combination with mesenchymal stem cells depending on the recipient age in the experiment. Orthopaedics, Traumatology and Prosthetics, (3‒4), 80‒90. http://dx.doi.org/10.15674/0030-598720223-480-90
  22. Gontar, N. M. (2023) Changes in markers of bone tissue remodeling and the inflammatory process in the blood serum of white rats in case of defect filling of the femur with implants based on polylactide and tricalciumphosphate with mesenchymal stem cells. Orthopaedics, Traumatology and Prosthetics (2), 33‒42. http://dx.doi.org/10.15674/0030-59872023233-42
  23. Walters, S. J., Campbell, M. J., & Machin, D. (2021). Medical Statistics: A Textbook for the Health Sciences (5th Eds). Wiley-Blackwellm
  24. Poser, L., Matthys, R., Schawalder, P., Pearce, S., Alini, M., & Zeiter, S. (2014). A standardized critical size defect model in normal and osteoporotic rats to evaluate bone tissue engineered constructs. BioMed research international, 2014, 348635. https://doi.org/10.1155/2014/348635
  25. Tao, Z. S., Wu, X. J., Zhou, W. S., Wu, X. J., Liao, W., Yang, M., Xu, H. G., & Yang, L. (2019). Local administration of aspirin with β-tricalcium phosphate/poly-lactic-co-glycolic acid (β-TCP/PLGA) could enhance osteoporotic bone regeneration. Journal of bone and mineral metabolism, 37(6), 1026–1035. https://doi.org/10.1007/s00774-019-01008-w
  26. Gentile, P., Chiono, V., Carmagnola, I., & Hatton, P. V. (2014). An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International journal of molecular sciences, 15(3), 3640–3659. https://doi.org/10.3390/ijms15033640
  27. Xu, Z., Wang, N., Liu, P., Sun, Y., Wang, Y., Fei, F., Zhang, S., Zheng, J., & Han, B. (2019). Poly(Dopamine) Coating on 3D-Printed Poly-Lactic-Co-Glycolic Acid/β-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. Molecules (Basel, Switzerland), 24(23), 4397. https://doi.org/10.3390/molecules24234397
  28. Zyman, Z. Z. (2018). Calcium-phosphate biomaterials. Textbook, Kharkiv. (in Ukrainian)
  29. Bohner, M., Santoni, B. L. G., & Dobelin, N. (2020). β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta biomaterialia, 113, 23–41. https://doi.org/10.1016/j.actbio.2020.06.022
  30. Mende, W., Götzl, R., Kubo, Y., Pufe, T., Ruhl, T., & Beier,J. P. (2021). The role of adipose stem cells in bone regeneration and bone tissue engineering. Cells, 10(5), 975. https://doi. org/10.3390/cells10050975
  31. Chatterjea, A., LaPointe, V. L., Alblas, J., Chatterjea, S., van Blitterswijk, C. A., & de Boer, J. (2014). Suppression of the immune system as a critical step for bone formation from allogeneic osteoprogenitors implanted in rats. Journal of cellular and molecular medicine, 18 (1), 134–142. https://doi.org/10.1111/jcmm.12172
  32. Grayson, W. L., Bunnell, B. A., Martin, E., Frazier, T., Hung, B. P., & Gimble, J. M. (2015). Stromal cells and stem cells in clinical bone regeneration. Nature reviews. Endocrinology, 11 (3), 140–150. https://doi.org/10.1038/nrendo.2014.234
  33. Wang, X., Jiang, H., Guo, L., Wang, S., Cheng, W., Wan, L., Zhang, Z., Xing, L., Zhou, Q., Yang, X., Han, H., Chen, X., & Wu, X. (2021). SDF-1 secreted by mesenchymal stem cells promotes the migration of endothelial progenitor cells via CXCR4/PI3K/AKT pathway. Journal of molecular histology, 52 (6), 1155–1164. https://doi.org/10.1007/s10735-021-10008-y

How to Cite

Ashukina, N. ., Gontar, N. ., Danуshchuk Z. ., Nikolchenko, O. ., & Kaliyuzhna, Y. (2023). HISTOLOGICAL STRUCTURE OF THE RAT FEMURS AFTER FILLING OF DEFECTS IN THE DISTAL METAPHYSIS WITH 3D-PRINTED IMPLANTS BASED ON POLYLACTIDE AND TRICALCIUM PHOSPHATE IN COMBINATION WITH MESENCHYMAL STROMAL CELLS. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3), 43–50. https://doi.org/10.15674/0030-59872023343-50

Issue

Section

ORIGINAL ARTICLES