Modern approaches to modeling in vivo degenerative spine diseases
DOI:
https://doi.org/10.15674/0030-598720221-2108-117Keywords:
osteoarthritis of facet joints, Animal models, intervertebral disc degeneration, ratAbstract
Every year, more and more people suffer from illnesses and disabilities that occur due to lumbar pain. Many studies, some
of that use in-vivo models, are conducted to decrease the socioeconomic impact of the consequences of degenerative spine
diseases. Objective. To evaluate the advantages and disadvantages of different in vivo models that are used to study the mechanisms of development of degenerative disturbances in spinal motion segments and test prospective methods of treating them. Methods. A search was conducted in the PubMed, Google Scholar, and Base scientific databases with the following key words: Spinal Diseases, Spine Disorder, Intervertebral Disc Degeneration (Repair), Facet Joint Degeneration (Repair), Animal Model, Facet (Zygapophyseal) Joint Osteoarthritis, Canine (dog), Swine (Pig), Ovine (sheep), Rabbit, Rat, Mice. The depth of the search was 10 years. Results. Rodents, pigs, goats, dogs, sheep, and primates are used to study mechanisms of development of degenerative disturbances in spinal motion segments and to test different approaches. Studies on larger animals are conducted due to their similarities in size, anatomy, biomechanics, and histological structure of vertebrae and intervertebral discs to humans. Models using dogs and alpacas are specifically of interest because of the natural age-related degradation of their intervertebral discs. However, experiments using large animals are restricted by high costs and bioethics regulations. The use of rabbits, rats, and mice in experiments is promising. For these animals, degenerative disturbances in the spine are modeled by creating traumatic injuries (disturbing the integrity of facet joints, endplates, annulus fibrosus, and nucleus pulposus, nucleotomy, and discectomy) or injection of chemical agents. Conclusions. The advantages of using of rodents instead of large animals to model the mechanisms of development of degenerative spine diseases and to test treatment methods include the relative ease of use and reproducibility of experiments, and economic and ethical viability. However, models should be chosen carefully and according to with the aims of the study.
References
- Eckert, R., Randell, D., Augustine, J. (1991). Animal Physiology: Mechanisms and Adaptation. Moscow: Mir. (in russian)
- Radchenko, V. O., Dedukh, N. V., Malyshkina, S. V., Badradinova, I. V. (2003). Some aspects of optimizing the regeneration of a damaged intervertebral disc / // Annals of Traumatology and Orthopedics, 3–4, 6–16. (in Ukrainian)
- Radchenko, V., Skidanov, A., Ivanov, G., Ashukina, N., & Levytskyi, P. (2014). Modeling of fixation with using of transpedicular constructs in the lumbar spine of the rats. ORTHOPAEDICS, TRAUMATOLOGY and PROSTHETICS, 0(3), 86. doi:10.15674/0030-59872014386-89
- Piontkovsky, V. K., Ashukina, N. A., Malceva, V. E., & Ivanov, G. V. (2019). The effect of radiofrequency ablation on intervertebral disc after nucleotomy in rats. Bulletin of Problems Biology and Medicine, 2(4), 291. doi:10.29254/2077-4214-2018-4-2-147-291-297
- Fusellier, M., Clouet, J., Gauthier, O., Tryfonidou, M., Le Visage, C., & Guicheux, J. (2020). Degenerative lumbar disc disease: In vivo data support the rationale for the selection of appropriate animal models. European Cells and Materials, 39, 17-48. doi:10.22203/ecm.v039a02
- Daly, C., Ghosh, P., Jenkin, G., Oehme, D., & Goldschlager, T. (2016). A review of animal models of Intervertebral disc degeneration: Pathophysiology, regeneration, and translation to the clinic. BioMed Research International, 2016, 1-14. doi:10.1155/2016/5952165
- Bergknut, N., Rutges, J. P., Kranenburg, H. C., Smolders, L. A., Hagman, R., Smidt, H., … Dhert, W. J. (2012). The dog as an animal model for Intervertebral disc degeneration? Spine, 37(5), 351-358. doi:10.1097/brs.
- Wang, T., Pelletier, M. H., Christou, C., Oliver, R., Mobbs, R. J., & Walsh, W. R. (2018). A novel in vivo large animal model of lumbar spinal joint degeneration. The Spine Journal, 18(10), 1896-1909. doi:10.1016/j.spinee.2018.05.022
- Lu, Y., Pei, S., & Hou, S. (2020). Development of a novel rat model of lumbar facet joint osteoarthritis induced by persistent compressive injury. Experimental and Therapeutic Medicine. doi:10.3892/etm.2020.9117
- Hartvigsen, J., Hancock, M. J., Kongsted, A., Louw, Q., Ferreira, M. L., Genevay, S., … Woolf, A. (2018). What low back pain is and why we need to pay attention. The Lancet, 391(10137), 2356-2367. doi:10.1016/s0140-6736(18)30480-x
- Mattiuzzi, C., Lippi, G., & Bovo, C. (2020). Current epidemiology of low back pain. Journal of Hospital Management and Health Policy, 4, 15-15. doi:10.21037/jhmhp-20-17
- Lee, N. N., Salzer, E., Bach, F. C., Bonilla, A. F., Cook, J. L., Gazit, Z., … Tryfonidou, M. A. (2021). A comprehensive tool box for large animal studies of intervertebral disc degeneration. JOR SPINE, 4(2). doi:10.1002/jsp2.1162
- Busscher, I., Ploegmakers, J. J., Verkerke, G. J., & Veldhuizen, A. G. (2010). Comparative anatomical dimensions of the complete human and porcine spine. European Spine Journal, 19(7), 1104-1114. doi:10.1007/s00586-010-1326-9
- Sheng, S., Xu, H., Wang, Y., Zhu, Q., Mao, F., Lin, Y., & Wang, X. (2016). Comparison of cervical spine anatomy in calves, pigs and humans. PLOS ONE, 11(2), e0148610. doi:10.1371/journal.pone.0148610
- Cho, H., Park, S., Lee, S., Kang, M., Hasty, K. A., & Kim, S. (2011). Snapshot of degenerative aging of porcine intervertebral disc: A model to unravel the molecular mechanisms. Experimental and Molecular Medicine, 43(6), 334. doi:10.3858/emm.2011.43.6.036
- Omlor, G. W., Fischer, J., Kleinschmitt, K., Benz, K., Holschbach, J., Brohm, K., … Richter, W. (2014). Short-term follow-up of disc cell therapy in a porcine nucleotomy model with an albumin–hyaluronan hydrogel: In vivo and in vitro results of metabolic disc cell activity and implant distribution. European Spine Journal, 23(9), 1837-1847. doi:10.1007/s00586-014-3314-y
- Kang, R., Li, H., Xi, Z., Ringgard, S., Baatrup, A., Rickers, K., … Bünger, C. (2018). Surgical repair of annulus defect with biomimetic multilamellar nano/microfibrous scaffold in a porcine model. Journal of Tissue Engineering and Regenerative Medicine, 12(1), 164-174. doi:10.1002/term.2384
- Bateman, A. H., Balkovec, C., Akens, M. K., Chan, A. H., Harrison, R. D., Oakden, W., … McGill, S. M. (2016). Closure of the annulus fibrosus of the intervertebral disc using a novel suture application device—in vivo porcine and ex vivo biomechanical evaluation. The Spine Journal, 16(7), 889-895. doi:10.1016/j.spinee.2016.03.
- Flouzat-Lachaniette, C., Jullien, N., Bouthors, C., Beohou, E., Laurent, B., Bierling, P., … Rouard, H. (2018). A novel in vivo porcine model of intervertebral disc degeneration induced by cryoinjury. International Orthopaedics, 42(9), 2263-2272. doi:10.1007/s00264-018-3971-2 A novel in vivo porcine model of intervertebral disc degeneration induced by cryoinjury / C. H. Flouzat-Lachaniette, N. Jullien, C. Bouthors [et al.] // International Orthopaedics. — 2018. — Vol. 42 (9). — P. 2263–2272. — DOI: 10.1007/ s00264-018-3971-2.
- Kang, R., Li, H., Ringgaard, S., Rickers, K., Sun, H., Chen, M., … Bünger, C. (2014). Interference in the endplate nutritional pathway causes intervertebral disc degeneration in an immature porcine model. International Orthopaedics, 38(5), 1011-1017. doi:10.1007/s00264-014-2319-9
- Yin, S., Du, H., Zhao, W., Ma, S., Zhang, M., Guan, M., & Liu, M. (2019). Inhibition of both endplate nutritional pathways results in intervertebral disc degeneration in a goat model. Journal of Orthopaedic Surgery and Research, 14(1). doi:10.1186/s13018-019-1188-8
- Stolworthy, D. K., Bowden, A. E., Roeder, B. L., Robinson, T. F., Holland, J. G., Christensen, S. L., … Taylor, M. D. (2015). MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine. Journal of Orthopaedic Research, 33(12), 1776-1783. doi:10.1002/jor.22968
- Freeman, B. J., Kuliwaba, J. S., Jones, C. F., Shu, C. C., Colloca, C. J., Zarrinkalam, M. R., … Howell, S. (2016). Allogeneic Mesenchymal precursor cells promote healing in postero-lateral annular lesions and improve indices of lumbar Intervertebral disc degeneration in an ovine model. Spine, 41(17), 1331-1339. doi:10.1097/brs.0000000000001528
- Vadalà, G., Russo, F., De Strobel, F., Bernardini, M., De Benedictis, G. M., Cattani, C., … Denaro, V. (2018). Novel stepwise model of intervertebral disc degeneration with intact annulus fibrosus to test regeneration strategies. Journal of Orthopaedic Research®, 36(9), 2460-2468. doi:10.1002/jor.23905
- Fenn, J., & Olby, N. J. (2020). Classification of Intervertebral disc disease. Frontiers in Veterinary Science, 7. doi:10.3389/fvets.2020.579025
- Lee, N. N., Kramer, J. S., Stoker, A. M., Bozynski, C. C., Cook, C. R., Stannard, J. T., … Cook, J. L. (2020). Canine models of spine disorders. JOR SPINE, 3(4). doi:10.1002/jsp2.1109
- Jeong, I., Piao, Z., Rahman, M., Kim, S., & Kim, N. (2019). Canine thoracolumbar intervertebral disk herniation and rehabilitation therapy after surgical decompression: A retrospective study. Journal of Advanced Veterinary and Animal Research, 6(3), 394. doi:10.5455/javar.2019.f359
- Martin-Vaquero, P., Da Costa, R., & Lima, C. (2014). Cervical spondylomyelopathy in great danes: A magnetic resonance imaging morphometric study. The Veterinary Journal, 201(1), 64-71. doi:10.1016/j.tvjl.2014.04.011
- Bonelli, M. D., da Costa, L. B., & Da Costa, R. C. (2021). Magnetic resonance imaging and neurological findings in dogs with disc‐associated cervical spondylomyelopathy: A case series. BMC Veterinary Research, 17(1). doi:10.1186/s12917-021-02846-5
- Willems, N., Tellegen, A. R., Bergknut, N., Creemers, L. B., Wolfswinkel, J., Freudigmann, C., … Meij, B. P. (2016). Inflammatory profiles in canine intervertebral disc degeneration. BMC Veterinary Research, 12(1). doi:10.1186/s12917-016-0635-6
- Grunert, P., Moriguchi, Y., Grossbard, B. P., Ricart Arbona, R. J., Bonassar, L. J., & Härtl, R. (2017). Degenerative changes of the canine cervical spine after discectomy procedures, an in vivo study. BMC Veterinary Research, 13(1). doi:10.1186/s12917-017-1105-5
- Xin, H., Zhang, C., Wang, D., Shi, Z., Gu, T., Wang, C., … Ruan, D. (2013). Tissue-engineered allograft Intervertebral disc transplantation for the treatment of degenerative disc disease: Experimental study in a beagle model. Tissue Engineering Part A, 19(1-2), 143-151. doi:10.1089/ten.tea.2012.0255
- Zhang, Z., Wang, C., Yang, P., & Wang, K. (2018). Mesenchymal stem cells induced by Microencapsulated Chondrocytes on repairing of Intervertebral disc degeneration. Orthopaedic Surgery, 10(4), 328-336. doi:10.1111/os.12411
- Inoue, M., Isa, I. L., Orita, S., Suzuki-Narita, M., Inage, K., Shiga, Y., … Ohtori, S. (2020). An injectable Hyaluronic acid Hydrogel promotes Intervertebral disc repair in a rabbit model. Spine, 46(15), E810-E816. doi:10.1097/brs.0000000000003921
- Sudo, T., Akeda, K., Kawaguchi, K., Hasegawa, T., Yamada, J., Inoue, N., … Sudo, A. (2021). Intradiscal injection of monosodium iodoacetate induces intervertebral disc degeneration in an experimental rabbit model. Arthritis Research & Therapy, 23(1). doi:10.1186/s13075-021-02686-6
- Wang, Y., Wu, Y., Deng, M., & Kong, Q. (2021). Establishment of a rabbit Intervertebral disc degeneration model by percutaneous Posterolateral puncturing of lumbar discs under local anesthesia. World Neurosurgery, 154, e830-e837. doi:10.1016/j.wneu.2021.08.024
- Dumanlidag, D., Keles, D., Oktay, G., & Kosay, C. (2021). Effects of vertebral fusion on levels of pro-inflammatory and catabolic mediators in a rabbit model of intervertebral disc degeneration. Acta Orthopaedica et Traumatologica Turcica, 55(3), 246-252. doi:10.5152/j.aott.2021.19195
- Hei, L., Ge, Z., Yuan, W., Suo, L., Suo, Z., Lin, L., … Qiu, Y. (2021). Evaluation of a rabbit model of adjacent intervertebral disc degeneration after fixation and fusion and maintenance in an upright feeding cage. Neurological Research, 43(6), 447-457. doi:10.1080/01616412.2020.1866804
- Beierfuß, A., Hunjadi, M., Ritsch, A., Kremser, C., Thomé, C., & Mern, D. S. (2019). APOE-knockout in rabbits causes loss of cells in nucleus pulposus and enhances the levels of inflammatory catabolic cytokines damaging the intervertebral disc matrix. PLOS ONE, 14(11), e0225527. doi:10.1371/journal.pone.0225527
- Wu, B., Meng, C., Wang, H., Jia, C., & Zhao, Y. (2016). Changes of proteoglycan and collagen II of the adjacent intervertebral disc in the cervical instability models. Biomedicine & Pharmacotherapy, 84, 754-758. doi:10.1016/j.biopha.2016.09.077
- Jaumard, N. V., Leung, J., Gokhale, A. J., Guarino, B. B., Welch, W. C., & Winkelstein, B. A. (2015). Relevant anatomic and morphological measurements of the rat spine. Spine, 40(20), E1084-E1092. doi:10.1097/brs.0000000000001021
- Gruber, H. E., Phillips, R., Ingram, J. A., Norton, J. H., & Hanley, E. N. (2014). Spontaneous age-related cervical disc degeneration in the sand rat. Clinical Orthopaedics & Related Research, 472(6), 1936-1942. doi:10.1007/s11999-014-3497-x
- Gruber, H., & Hanley, E. (2017). Morphologic features of spontaneous annular tears and disc degeneration in the aging sand rat (Psammomys obesus obesus). Biotechnic & Histochemistry, 92(6), 402-410. doi:10.1080/10520295.2017.1337227
- Lai, A., Gansau, J., Gullbrand, S. E., Crowley, J., Cunha, C., Dudli, S., … Iatridis, J. C. (2021). Development of a standardized histopathology scoring system for intervertebral disc degeneration in rat models: An initiative of the ORS spine section. JOR SPINE, 4(2). doi:10.1002/jsp2.1150
- Kim, H., Hong, J. Y., Lee, J., Jeon, W., & Ha, I. (2021). IL-1β promotes disc degeneration and inflammation through direct injection of intervertebral disc in a rat lumbar disc herniation model. The Spine Journal, 21(6), 1031-1041. doi:10.1016/j.spinee.2021.01.014
- Suh, H. R., Cho, H., & Han, H. C. (2022). Development of a novel model of intervertebral disc degeneration by the intradiscal application of monosodium iodoacetate (MIA) in rat. The Spine Journal, 22(1), 183-192. doi:10.1016/j.spinee.2021.06.008
- Tian, T., Wang, H., Li, Z., Yang, S., & Ding, W. (2021). Intervertebral disc degeneration induced by needle puncture and Ovariectomy: A rat coccygeal model. BioMed Research International, 2021, 1-7. doi:10.1155/2021/5510124
- Hu, M., Yang, K., Chen, Y., Sun, Y., Lin, F., & Yang, S. (2017). Optimization of puncture injury to rat caudal disc for mimicking early degeneration of intervertebral disc. Journal of Orthopaedic Research, 36 (1), 202–211. doi:10.1002/jor.23628
- Qian, J., Ge, Q., Yan, Wu, C., Yang, H., Zou, J. (2019). Selection of the optimal puncture Needlefor induction of a rat Intervertebral DiscDegeneration model. Pain Physician, 4(22;4), 353-360. doi:10.36076/ppj/2019.22.353
- Huang, X., Wang, W., Meng, Q., Yu, L., Fan, C., Yu, J., … Ye, X. (2019). Effect of needle diameter, type and volume of contrast agent on intervertebral disc degeneration in rats with discography. European Spine Journal, 28(5), 1014-1022. doi:10.1007/s00586-019-05927-0
- Mosley, G. E., Wang, M., Nasser, P., Lai, A., Charen, D. A., Zhang, B., & Iatridis, J. C. (2020). Males and females exhibit distinct relationships between intervertebral disc degeneration and pain in a rat model. Scientific Reports, 10(1). doi:10.1038/s41598-020-72081-9
- Yuan, W., Che, W., Jiang, Y., Yuan, F., Wang, H., Zheng, G., … Dong, J. (2015). Establishment of intervertebral disc degeneration model induced by ischemic sub-endplate in rat tail. The Spine Journal, 15(5), 1050-1059. doi:10.1016/j.spinee.2015.01.026
- Fernández-Susavila, H., Pardo-Seco, J. P., Iglesias-Rey, R., Sobrino, T., Campos, F., & Díez-Ulloa, M. A. (2017). Model of disc degeneration in rat tail induced through a vascular isolation of vertebral Endplates. Journal of Investigative Surgery, 31(4), 265-274. doi:10.1080/08941939.2017.1317373
- Su, Q., Li, Y., Feng, X., Tan, J., Ge, H., Cheng, B., & Zhang, Y. (2021). Association and histological characteristics of endplate injury and intervertebral disc degeneration in a rat model. Injury, 52(8), 2084-2094. doi:10.1016/j.injury.2021.05.034
- Hirata, H., Yurube, T., Kakutani, K., Maeno, K., Takada, T., Yamamoto, J., … Nishida, K. (2013). A rat tail temporary static compression model reproduces different stages of intervertebral disc degeneration with decreased notochordal cell phenotype. Journal of Orthopaedic Research, 32(3), 455-463. doi:10.1002/jor.22533
- Yurube, T., Hirata, H., Kakutani, K., Maeno, K., Takada, T., Zhang, Z., … Nishida, K. (2014). Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model. Arthritis Research & Therapy, 16(1), R31. doi:10.1186/ar4460
- Xia, W., Zhang, L., Mo, J., Zhang, W., Li, H., Luo, Z., & Yang, H. (2018). Effect of static compression loads on Intervertebral disc: Anin VivoBent rat tail model. Orthopaedic Surgery, 10(2), 134-143. doi:10.1111/os.12377
- Miyagi, M., Ishikawa, T., Kamoda, H., Suzuki, M., Murakami, K., Shibayama, M., … Ohtori, S. (2012). ISSLS prize winner. Spine, 37(21), 1810-1818. doi:10.1097/brs.0b013e31824ffac6
- Liu, Q., Wang, X., Hua, Y., Kong, G., Wu, X., Huang, Z., … Zhu, Q. (2019). Estrogen deficiency exacerbates Intervertebral disc degeneration induced by spinal instability in rats. Spine, 44(9), E510-E519. doi:10.1097/brs.0000000000002904
- Fukui, D., Kawakami, M., Cheng, K., Murata, K., Yamada, K., Sato, R., … Masuda, K. (2017). Three-dimensional micro-computed tomography analysis for spinal instability after lumbar facetectomy in the rat. European Spine Journal, 26(8), 2014-2020. doi:10.1007/s00586-016-4920-7
- Ding, Y., Jiang, J., Zhou, J., Wu, X., Huang, Z., Chen, J., & Zhu, Q. (2014). The effects of osteoporosis and disc degeneration on vertebral cartilage endplate lesions in rats. European Spine Journal, 23(9), 1848-1855. doi:10.1007/s00586-014-3324-9
- Fukui, D., Kawakami, M., Yoshida, M., Nakao, S., Matsuoka, T., & Yamada, H. (2014). Gait abnormality due to spinal instability after lumbar facetectomy in the rat. European Spine Journal, 24(9), 2085-2094. doi:10.1007/s00586-014-3537-y
- Liang, T., Zhong, D., Che, Y., Chen, X., Guo, J., Yang, H., & Luo, Z. (2020). Nano and micro biomechanical analyses of the nucleus pulposus after in situ immobilization in rats. Micron, 130, 102824. doi:10.1016/j.micron.2020.102824
- Che, Y., Li, H., Liang, T., Chen, X., Guo, J., Jiang, H., … Yang, H. (2018). Intervertebral disc degeneration induced by long-segment in-situ immobilization: A macro, micro, and nanoscale analysis. BMC Musculoskeletal Disorders, 19(1). doi:10.1186/s12891-018-2235-z
- Shuang, F., Hou, S., Zhu, J., Liu, Y., Zhou, Y., Zhang, C., & Tang, J. (2015). Establishment of a rat model of lumbar facet joint osteoarthritis using intraarticular injection of urinary plasminogen activator. Scientific Reports, 5(1). doi:10.1038/srep09828
- Ita, M. E., Ghimire, P., Welch, R. L., Troche, H. R., & Winkelstein, B. A. (2020). Intra-articular collagenase in the spinal facet joint induces pain, DRG Neuron dysregulation and increased MMP-1 absent evidence of joint destruction. Scientific Reports, 10(1). doi:10.1038/s41598-020-78811-3
- Shuang, F., Zhu, J., Song, K., Hou, S., Liu, Y., Zhang, C., & Tang, J. (2014). Establishment of a rat model of adjuvant-induced osteoarthritis of the lumbar facet joint. Cell Biochemistry and Biophysics, 70(3), 1545-1551. doi:10.1007/s12013-014-0091-5
- Kim, J. S. , Ahmadinia,K., Li, X., Hamilton, J. L., Andrews, S., Haralampus, Ch. A., ... Im, H.-J. (2015). Development of an experimental animal model for lower back pain by percutaneous injury-induced lumbar facet joint osteoarthritis. Cell Biochemistry and Biophysics, 230 (11), 2837–2847. doi: 10.1002/jcp.25015.
- Zhang, N., Tian, F., Gou, Y., Chen, T., Kong, Q., Lv, Q., … Zhang, L. (2019). Protective effect of Alendronate on lumbar facet degeneration in Ovariectomized rats. Medical Science Monitor, 25, 4907-4915. doi:10.12659/msm.916978
- Millecamps, M., Tajerian, M., Naso, L., Sage, H. E., & Stone, L. S. (2012). Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain, 153(6), 1167-1179. doi:10.1016/j.pain.2012.01.027
- Ohnishi, T., Yamada, K., Iwasaki, K., Tsujimoto, T., Higashi, H., Kimura, T., … Sudo, H. (2019). Caspase-3 knockout inhibits intervertebral disc degeneration related to injury but accelerates degeneration related to aging. Scientific Reports, 9(1). doi:10.1038/s41598-019-55709-3
- Xie, W., Zhao, Y., Li, F., Shu, B., Lin, S., Sun, L., … Zheng, H. (2019). Velvet antler polypeptide partially rescue facet joint osteoarthritis-like phenotype in adult β-catenin conditional activation mice. BMC Complementary and Alternative Medicine, 19(1). doi:10.1186/s12906-019-2607-4.
- Millecamps, M., Lee, S., Foster, D. Z., & Stone, L. S. (2021). Disc degeneration spreads: Long-term behavioural, histologic and radiologic consequences of a single-level disc injury in active and sedentary mice. European Spine Journal, 30(8), 2238-2246. doi:10.1007/s00586-021-06893-2
- Lee, S., Millecamps, M., Foster, D. Z., & Stone, L. S. (2019). Long‐term histological analysis of innervation and macrophage infiltration in a mouse model of intervertebral disc injury–induced low back pain. Journal of Orthopaedic Research, 38(6), 1238-1247. doi:10.1002/jor.24560
- Tian, Z., Ma, X., Yasen, M., Mauck, R. L., Qin, L., Shofer, F. S., … Zhang, Y. (2018). Intervertebral disc degeneration in a percutaneous mouse tail injury model. American Journal of Physical Medicine & Rehabilitation, 97(3), 170-177. doi:10.1097/phm.0000000000000818
- Yokozeki, Y., Uchida, K., Kawakubo, A., Nakawaki, M., Okubo, T., Miyagi, M., … Takaso, M. (2021). TGF-β regulates nerve growth factor expression in a mouse intervertebral disc injury model. BMC Musculoskeletal Disorders, 22(1). doi:10.1186/s12891-021-04509-w
- Piazza, M., Peck, S. H., Gullbrand, S. E., Bendigo, J. R., Arginteanu, T., Zhang, Y., … Smith, L. J. (2018). Quantitative MRI correlates with histological grade in a percutaneous needle injury mouse model of disc degeneration. Journal of Orthopaedic Research®, 36(10), 2771-2779. doi:10.1002/jor.24028
- Kerr, G. J., To, B., White, I., Millecamps, M., Beier, F., Grol, M. W., … Séguin, C. A. (2021). Diet-induced obesity leads to behavioral indicators of pain preceding structural joint damage in wild-type mice. Arthritis Research & Therapy, 23(1). doi:10.1186/s13075-021-02463-5
- Wu, T., Ni, S., Cao, Y., Liao, S., Hu, J., & Duan, C. (2018). Three-dimensional visualization and pathologic characteristics of cartilage and subchondral bone changes in the lumbar facet joint of an ovariectomized mouse model. The Spine Journal, 18(4), 663-673. doi:10.1016/j.spinee.2017.11.009
- Chen, H., Zhu, H., Zhang, K., Chen, K., & Yang, H. (2017). Estrogen deficiency accelerates lumbar facet joints arthritis. Scientific Reports, 7(1). doi:10.1038/s41598-017-01427-7
- Ni, S., Cao, Y., Liao, S., Duan, C., Jiang, L., Hu, J., … Wu, T. (2019). Unilateral osteotomy of lumbar facet joint induces a mouse model of lumbar facet joint osteoarthritis. Spine, 44(16), E930-E938. doi:10.1097/brs.0000000000003023
- Oichi, T., Taniguchi, Y., Soma, K., Chang, S. H., Yano, F., Tanaka, S., & Saito, T. (2018). A mouse Intervertebral disc degeneration model by surgically induced instability. Spine, 43(10), E557-E564. doi:10.1097/brs.0000000000002427
- Liu, S., Wang, Q., Li, Z., Ma, L., Li, T., Li, Y., … Wang, C. (2021). TRPV1 channel activated by the PGE2/EP4 pathway mediates spinal hypersensitivity in a mouse model of vertebral Endplate degeneration. Oxidative Medicine and Cellular Longevity, 2021, 1-16. doi:10.1155/2021/9965737.
- Liu, S., Sun, Y., Dong, J., & Bian, Q. (2021). A mouse model of lumbar spine instability. Journal of Visualized Experiments, (170). doi:10.3791/61722-v
Downloads
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).