Modern approaches to modeling in vivo degenerative spine diseases

Authors

DOI:

https://doi.org/10.15674/0030-598720221-2108-117

Keywords:

osteoarthritis of facet joints, Animal models, intervertebral disc degeneration, rat

Abstract

Every year, more and more people suffer from illnesses and disabilities that occur due to lumbar pain. Many studies, some
of that use in-vivo models, are conducted to decrease the socioeconomic impact of the consequences of degenerative spine
diseases. Objective. To evaluate the advantages and disadvantages of different in vivo models that are used to study the mechanisms of development of degenerative disturbances in spinal motion segments and test prospective methods of treating them. Methods. A search was conducted in the PubMed, Google Scholar, and Base scientific databases with the following key words: Spinal Diseases, Spine Disorder, Intervertebral Disc Degeneration (Repair), Facet Joint Degeneration (Repair), Animal Model, Facet (Zygapophyseal) Joint Osteoarthritis, Canine (dog), Swine (Pig), Ovine (sheep), Rabbit, Rat, Mice. The depth of the search was 10 years. Results. Rodents, pigs, goats, dogs, sheep, and primates are used to study mechanisms of development of degenerative disturbances in spinal motion segments and to test different approaches. Studies on larger animals are conducted due to their similarities in size, anatomy, biomechanics, and histological structure of vertebrae and intervertebral discs to humans. Models using dogs and alpacas are specifically of interest because of the natural age-related degradation of their intervertebral discs. However, experiments using large animals are restricted by high costs and bioethics regulations. The use of rabbits, rats, and mice in experiments is promising. For these animals, degenerative disturbances in the spine are modeled by creating traumatic injuries (disturbing the integrity of facet joints, endplates, annulus fibrosus, and nucleus pulposus, nucleotomy, and discectomy) or injection of chemical agents. Conclusions. The advantages of using of rodents instead of large animals to model the mechanisms of development of degenerative spine diseases and to test treatment methods include the relative ease of use and reproducibility of experiments, and economic and ethical viability. However, models should be chosen carefully and according to with the aims of the study.

Author Biographies

Volodymyr Radchenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Traumatology and Orthopаedics

Mykyta Skidanov, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

Intern doctor in Traumatology and Orthopaedics

Nataliya Ashukina, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, PhD in Biol. Sci.

Valentyna Maltseva, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Phd in Biol. Sci.

Artem Skidanov, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

Municipal non-profit enterprise «City Multidisciplinary Hospital No. 18» of the Kharkiv City Council.Ukraine

DMSci in Traumatology and Orthopаedics

Oleksandr Barkov, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, PhD in Traumatology and Orthopаedics

References

  1. Eckert, R., Randell, D., Augustine, J. (1991). Animal Physiology: Mechanisms and Adaptation. Moscow: Mir. (in russian)
  2. Radchenko, V. O., Dedukh, N. V., Malyshkina, S. V., Badradinova, I. V. (2003). Some aspects of optimizing the regeneration of a damaged intervertebral disc / // Annals of Traumatology and Orthopedics, 3–4, 6–16. (in Ukrainian)
  3. Radchenko, V., Skidanov, A., Ivanov, G., Ashukina, N., & Levytskyi, P. (2014). Modeling of fixation with using of transpedicular constructs in the lumbar spine of the rats. ORTHOPAEDICS, TRAUMATOLOGY and PROSTHETICS, 0(3), 86. doi:10.15674/0030-59872014386-89
  4. Piontkovsky, V. K., Ashukina, N. A., Malceva, V. E., & Ivanov, G. V. (2019). The effect of radiofrequency ablation on intervertebral disc after nucleotomy in rats. Bulletin of Problems Biology and Medicine, 2(4), 291. doi:10.29254/2077-4214-2018-4-2-147-291-297
  5. Fusellier, M., Clouet, J., Gauthier, O., Tryfonidou, M., Le Visage, C., & Guicheux, J. (2020). Degenerative lumbar disc disease: In vivo data support the rationale for the selection of appropriate animal models. European Cells and Materials, 39, 17-48. doi:10.22203/ecm.v039a02
  6. Daly, C., Ghosh, P., Jenkin, G., Oehme, D., & Goldschlager, T. (2016). A review of animal models of Intervertebral disc degeneration: Pathophysiology, regeneration, and translation to the clinic. BioMed Research International, 2016, 1-14. doi:10.1155/2016/5952165
  7. Bergknut, N., Rutges, J. P., Kranenburg, H. C., Smolders, L. A., Hagman, R., Smidt, H., … Dhert, W. J. (2012). The dog as an animal model for Intervertebral disc degeneration? Spine, 37(5), 351-358. doi:10.1097/brs.
  8. Wang, T., Pelletier, M. H., Christou, C., Oliver, R., Mobbs, R. J., & Walsh, W. R. (2018). A novel in vivo large animal model of lumbar spinal joint degeneration. The Spine Journal, 18(10), 1896-1909. doi:10.1016/j.spinee.2018.05.022
  9. Lu, Y., Pei, S., & Hou, S. (2020). Development of a novel rat model of lumbar facet joint osteoarthritis induced by persistent compressive injury. Experimental and Therapeutic Medicine. doi:10.3892/etm.2020.9117
  10. Hartvigsen, J., Hancock, M. J., Kongsted, A., Louw, Q., Ferreira, M. L., Genevay, S., … Woolf, A. (2018). What low back pain is and why we need to pay attention. The Lancet, 391(10137), 2356-2367. doi:10.1016/s0140-6736(18)30480-x
  11. Mattiuzzi, C., Lippi, G., & Bovo, C. (2020). Current epidemiology of low back pain. Journal of Hospital Management and Health Policy, 4, 15-15. doi:10.21037/jhmhp-20-17
  12. Lee, N. N., Salzer, E., Bach, F. C., Bonilla, A. F., Cook, J. L., Gazit, Z., … Tryfonidou, M. A. (2021). A comprehensive tool box for large animal studies of intervertebral disc degeneration. JOR SPINE, 4(2). doi:10.1002/jsp2.1162
  13. Busscher, I., Ploegmakers, J. J., Verkerke, G. J., & Veldhuizen, A. G. (2010). Comparative anatomical dimensions of the complete human and porcine spine. European Spine Journal, 19(7), 1104-1114. doi:10.1007/s00586-010-1326-9
  14. Sheng, S., Xu, H., Wang, Y., Zhu, Q., Mao, F., Lin, Y., & Wang, X. (2016). Comparison of cervical spine anatomy in calves, pigs and humans. PLOS ONE, 11(2), e0148610. doi:10.1371/journal.pone.0148610
  15. Cho, H., Park, S., Lee, S., Kang, M., Hasty, K. A., & Kim, S. (2011). Snapshot of degenerative aging of porcine intervertebral disc: A model to unravel the molecular mechanisms. Experimental and Molecular Medicine, 43(6), 334. doi:10.3858/emm.2011.43.6.036
  16. Omlor, G. W., Fischer, J., Kleinschmitt, K., Benz, K., Holschbach, J., Brohm, K., … Richter, W. (2014). Short-term follow-up of disc cell therapy in a porcine nucleotomy model with an albumin–hyaluronan hydrogel: In vivo and in vitro results of metabolic disc cell activity and implant distribution. European Spine Journal, 23(9), 1837-1847. doi:10.1007/s00586-014-3314-y
  17. Kang, R., Li, H., Xi, Z., Ringgard, S., Baatrup, A., Rickers, K., … Bünger, C. (2018). Surgical repair of annulus defect with biomimetic multilamellar nano/microfibrous scaffold in a porcine model. Journal of Tissue Engineering and Regenerative Medicine, 12(1), 164-174. doi:10.1002/term.2384
  18. Bateman, A. H., Balkovec, C., Akens, M. K., Chan, A. H., Harrison, R. D., Oakden, W., … McGill, S. M. (2016). Closure of the annulus fibrosus of the intervertebral disc using a novel suture application device—in vivo porcine and ex vivo biomechanical evaluation. The Spine Journal, 16(7), 889-895. doi:10.1016/j.spinee.2016.03.
  19. Flouzat-Lachaniette, C., Jullien, N., Bouthors, C., Beohou, E., Laurent, B., Bierling, P., … Rouard, H. (2018). A novel in vivo porcine model of intervertebral disc degeneration induced by cryoinjury. International Orthopaedics, 42(9), 2263-2272. doi:10.1007/s00264-018-3971-2 A novel in vivo porcine model of intervertebral disc degeneration induced by cryoinjury / C. H. Flouzat-Lachaniette, N. Jullien, C. Bouthors [et al.] // International Orthopaedics. — 2018. — Vol. 42 (9). — P. 2263–2272. — DOI: 10.1007/ s00264-018-3971-2.
  20. Kang, R., Li, H., Ringgaard, S., Rickers, K., Sun, H., Chen, M., … Bünger, C. (2014). Interference in the endplate nutritional pathway causes intervertebral disc degeneration in an immature porcine model. International Orthopaedics, 38(5), 1011-1017. doi:10.1007/s00264-014-2319-9
  21. Yin, S., Du, H., Zhao, W., Ma, S., Zhang, M., Guan, M., & Liu, M. (2019). Inhibition of both endplate nutritional pathways results in intervertebral disc degeneration in a goat model. Journal of Orthopaedic Surgery and Research, 14(1). doi:10.1186/s13018-019-1188-8
  22. Stolworthy, D. K., Bowden, A. E., Roeder, B. L., Robinson, T. F., Holland, J. G., Christensen, S. L., … Taylor, M. D. (2015). MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine. Journal of Orthopaedic Research, 33(12), 1776-1783. doi:10.1002/jor.22968
  23. Freeman, B. J., Kuliwaba, J. S., Jones, C. F., Shu, C. C., Colloca, C. J., Zarrinkalam, M. R., … Howell, S. (2016). Allogeneic Mesenchymal precursor cells promote healing in postero-lateral annular lesions and improve indices of lumbar Intervertebral disc degeneration in an ovine model. Spine, 41(17), 1331-1339. doi:10.1097/brs.0000000000001528
  24. Vadalà, G., Russo, F., De Strobel, F., Bernardini, M., De Benedictis, G. M., Cattani, C., … Denaro, V. (2018). Novel stepwise model of intervertebral disc degeneration with intact annulus fibrosus to test regeneration strategies. Journal of Orthopaedic Research®, 36(9), 2460-2468. doi:10.1002/jor.23905
  25. Fenn, J., & Olby, N. J. (2020). Classification of Intervertebral disc disease. Frontiers in Veterinary Science, 7. doi:10.3389/fvets.2020.579025
  26. Lee, N. N., Kramer, J. S., Stoker, A. M., Bozynski, C. C., Cook, C. R., Stannard, J. T., … Cook, J. L. (2020). Canine models of spine disorders. JOR SPINE, 3(4). doi:10.1002/jsp2.1109
  27. Jeong, I., Piao, Z., Rahman, M., Kim, S., & Kim, N. (2019). Canine thoracolumbar intervertebral disk herniation and rehabilitation therapy after surgical decompression: A retrospective study. Journal of Advanced Veterinary and Animal Research, 6(3), 394. doi:10.5455/javar.2019.f359
  28. Martin-Vaquero, P., Da Costa, R., & Lima, C. (2014). Cervical spondylomyelopathy in great danes: A magnetic resonance imaging morphometric study. The Veterinary Journal, 201(1), 64-71. doi:10.1016/j.tvjl.2014.04.011
  29. Bonelli, M. D., da Costa, L. B., & Da Costa, R. C. (2021). Magnetic resonance imaging and neurological findings in dogs with disc‐associated cervical spondylomyelopathy: A case series. BMC Veterinary Research, 17(1). doi:10.1186/s12917-021-02846-5
  30. Willems, N., Tellegen, A. R., Bergknut, N., Creemers, L. B., Wolfswinkel, J., Freudigmann, C., … Meij, B. P. (2016). Inflammatory profiles in canine intervertebral disc degeneration. BMC Veterinary Research, 12(1). doi:10.1186/s12917-016-0635-6
  31. Grunert, P., Moriguchi, Y., Grossbard, B. P., Ricart Arbona, R. J., Bonassar, L. J., & Härtl, R. (2017). Degenerative changes of the canine cervical spine after discectomy procedures, an in vivo study. BMC Veterinary Research, 13(1). doi:10.1186/s12917-017-1105-5
  32. Xin, H., Zhang, C., Wang, D., Shi, Z., Gu, T., Wang, C., … Ruan, D. (2013). Tissue-engineered allograft Intervertebral disc transplantation for the treatment of degenerative disc disease: Experimental study in a beagle model. Tissue Engineering Part A, 19(1-2), 143-151. doi:10.1089/ten.tea.2012.0255
  33. Zhang, Z., Wang, C., Yang, P., & Wang, K. (2018). Mesenchymal stem cells induced by Microencapsulated Chondrocytes on repairing of Intervertebral disc degeneration. Orthopaedic Surgery, 10(4), 328-336. doi:10.1111/os.12411
  34. Inoue, M., Isa, I. L., Orita, S., Suzuki-Narita, M., Inage, K., Shiga, Y., … Ohtori, S. (2020). An injectable Hyaluronic acid Hydrogel promotes Intervertebral disc repair in a rabbit model. Spine, 46(15), E810-E816. doi:10.1097/brs.0000000000003921
  35. Sudo, T., Akeda, K., Kawaguchi, K., Hasegawa, T., Yamada, J., Inoue, N., … Sudo, A. (2021). Intradiscal injection of monosodium iodoacetate induces intervertebral disc degeneration in an experimental rabbit model. Arthritis Research & Therapy, 23(1). doi:10.1186/s13075-021-02686-6
  36. Wang, Y., Wu, Y., Deng, M., & Kong, Q. (2021). Establishment of a rabbit Intervertebral disc degeneration model by percutaneous Posterolateral puncturing of lumbar discs under local anesthesia. World Neurosurgery, 154, e830-e837. doi:10.1016/j.wneu.2021.08.024
  37. Dumanlidag, D., Keles, D., Oktay, G., & Kosay, C. (2021). Effects of vertebral fusion on levels of pro-inflammatory and catabolic mediators in a rabbit model of intervertebral disc degeneration. Acta Orthopaedica et Traumatologica Turcica, 55(3), 246-252. doi:10.5152/j.aott.2021.19195
  38. Hei, L., Ge, Z., Yuan, W., Suo, L., Suo, Z., Lin, L., … Qiu, Y. (2021). Evaluation of a rabbit model of adjacent intervertebral disc degeneration after fixation and fusion and maintenance in an upright feeding cage. Neurological Research, 43(6), 447-457. doi:10.1080/01616412.2020.1866804
  39. Beierfuß, A., Hunjadi, M., Ritsch, A., Kremser, C., Thomé, C., & Mern, D. S. (2019). APOE-knockout in rabbits causes loss of cells in nucleus pulposus and enhances the levels of inflammatory catabolic cytokines damaging the intervertebral disc matrix. PLOS ONE, 14(11), e0225527. doi:10.1371/journal.pone.0225527
  40. Wu, B., Meng, C., Wang, H., Jia, C., & Zhao, Y. (2016). Changes of proteoglycan and collagen II of the adjacent intervertebral disc in the cervical instability models. Biomedicine & Pharmacotherapy, 84, 754-758. doi:10.1016/j.biopha.2016.09.077
  41. Jaumard, N. V., Leung, J., Gokhale, A. J., Guarino, B. B., Welch, W. C., & Winkelstein, B. A. (2015). Relevant anatomic and morphological measurements of the rat spine. Spine, 40(20), E1084-E1092. doi:10.1097/brs.0000000000001021
  42. Gruber, H. E., Phillips, R., Ingram, J. A., Norton, J. H., & Hanley, E. N. (2014). Spontaneous age-related cervical disc degeneration in the sand rat. Clinical Orthopaedics & Related Research, 472(6), 1936-1942. doi:10.1007/s11999-014-3497-x
  43. Gruber, H., & Hanley, E. (2017). Morphologic features of spontaneous annular tears and disc degeneration in the aging sand rat (Psammomys obesus obesus). Biotechnic & Histochemistry, 92(6), 402-410. doi:10.1080/10520295.2017.1337227
  44. Lai, A., Gansau, J., Gullbrand, S. E., Crowley, J., Cunha, C., Dudli, S., … Iatridis, J. C. (2021). Development of a standardized histopathology scoring system for intervertebral disc degeneration in rat models: An initiative of the ORS spine section. JOR SPINE, 4(2). doi:10.1002/jsp2.1150
  45. Kim, H., Hong, J. Y., Lee, J., Jeon, W., & Ha, I. (2021). IL-1β promotes disc degeneration and inflammation through direct injection of intervertebral disc in a rat lumbar disc herniation model. The Spine Journal, 21(6), 1031-1041. doi:10.1016/j.spinee.2021.01.014
  46. Suh, H. R., Cho, H., & Han, H. C. (2022). Development of a novel model of intervertebral disc degeneration by the intradiscal application of monosodium iodoacetate (MIA) in rat. The Spine Journal, 22(1), 183-192. doi:10.1016/j.spinee.2021.06.008
  47. Tian, T., Wang, H., Li, Z., Yang, S., & Ding, W. (2021). Intervertebral disc degeneration induced by needle puncture and Ovariectomy: A rat coccygeal model. BioMed Research International, 2021, 1-7. doi:10.1155/2021/5510124
  48. Hu, M., Yang, K., Chen, Y., Sun, Y., Lin, F., & Yang, S. (2017). Optimization of puncture injury to rat caudal disc for mimicking early degeneration of intervertebral disc. Journal of Orthopaedic Research, 36 (1), 202–211. doi:10.1002/jor.23628
  49. Qian, J., Ge, Q., Yan, Wu, C., Yang, H., Zou, J. (2019). Selection of the optimal puncture Needlefor induction of a rat Intervertebral DiscDegeneration model. Pain Physician, 4(22;4), 353-360. doi:10.36076/ppj/2019.22.353
  50. Huang, X., Wang, W., Meng, Q., Yu, L., Fan, C., Yu, J., … Ye, X. (2019). Effect of needle diameter, type and volume of contrast agent on intervertebral disc degeneration in rats with discography. European Spine Journal, 28(5), 1014-1022. doi:10.1007/s00586-019-05927-0
  51. Mosley, G. E., Wang, M., Nasser, P., Lai, A., Charen, D. A., Zhang, B., & Iatridis, J. C. (2020). Males and females exhibit distinct relationships between intervertebral disc degeneration and pain in a rat model. Scientific Reports, 10(1). doi:10.1038/s41598-020-72081-9
  52. Yuan, W., Che, W., Jiang, Y., Yuan, F., Wang, H., Zheng, G., … Dong, J. (2015). Establishment of intervertebral disc degeneration model induced by ischemic sub-endplate in rat tail. The Spine Journal, 15(5), 1050-1059. doi:10.1016/j.spinee.2015.01.026
  53. Fernández-Susavila, H., Pardo-Seco, J. P., Iglesias-Rey, R., Sobrino, T., Campos, F., & Díez-Ulloa, M. A. (2017). Model of disc degeneration in rat tail induced through a vascular isolation of vertebral Endplates. Journal of Investigative Surgery, 31(4), 265-274. doi:10.1080/08941939.2017.1317373
  54. Su, Q., Li, Y., Feng, X., Tan, J., Ge, H., Cheng, B., & Zhang, Y. (2021). Association and histological characteristics of endplate injury and intervertebral disc degeneration in a rat model. Injury, 52(8), 2084-2094. doi:10.1016/j.injury.2021.05.034
  55. Hirata, H., Yurube, T., Kakutani, K., Maeno, K., Takada, T., Yamamoto, J., … Nishida, K. (2013). A rat tail temporary static compression model reproduces different stages of intervertebral disc degeneration with decreased notochordal cell phenotype. Journal of Orthopaedic Research, 32(3), 455-463. doi:10.1002/jor.22533
  56. Yurube, T., Hirata, H., Kakutani, K., Maeno, K., Takada, T., Zhang, Z., … Nishida, K. (2014). Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model. Arthritis Research & Therapy, 16(1), R31. doi:10.1186/ar4460
  57. Xia, W., Zhang, L., Mo, J., Zhang, W., Li, H., Luo, Z., & Yang, H. (2018). Effect of static compression loads on Intervertebral disc: Anin VivoBent rat tail model. Orthopaedic Surgery, 10(2), 134-143. doi:10.1111/os.12377
  58. Miyagi, M., Ishikawa, T., Kamoda, H., Suzuki, M., Murakami, K., Shibayama, M., … Ohtori, S. (2012). ISSLS prize winner. Spine, 37(21), 1810-1818. doi:10.1097/brs.0b013e31824ffac6
  59. Liu, Q., Wang, X., Hua, Y., Kong, G., Wu, X., Huang, Z., … Zhu, Q. (2019). Estrogen deficiency exacerbates Intervertebral disc degeneration induced by spinal instability in rats. Spine, 44(9), E510-E519. doi:10.1097/brs.0000000000002904
  60. Fukui, D., Kawakami, M., Cheng, K., Murata, K., Yamada, K., Sato, R., … Masuda, K. (2017). Three-dimensional micro-computed tomography analysis for spinal instability after lumbar facetectomy in the rat. European Spine Journal, 26(8), 2014-2020. doi:10.1007/s00586-016-4920-7
  61. Ding, Y., Jiang, J., Zhou, J., Wu, X., Huang, Z., Chen, J., & Zhu, Q. (2014). The effects of osteoporosis and disc degeneration on vertebral cartilage endplate lesions in rats. European Spine Journal, 23(9), 1848-1855. doi:10.1007/s00586-014-3324-9
  62. Fukui, D., Kawakami, M., Yoshida, M., Nakao, S., Matsuoka, T., & Yamada, H. (2014). Gait abnormality due to spinal instability after lumbar facetectomy in the rat. European Spine Journal, 24(9), 2085-2094. doi:10.1007/s00586-014-3537-y
  63. Liang, T., Zhong, D., Che, Y., Chen, X., Guo, J., Yang, H., & Luo, Z. (2020). Nano and micro biomechanical analyses of the nucleus pulposus after in situ immobilization in rats. Micron, 130, 102824. doi:10.1016/j.micron.2020.102824
  64. Che, Y., Li, H., Liang, T., Chen, X., Guo, J., Jiang, H., … Yang, H. (2018). Intervertebral disc degeneration induced by long-segment in-situ immobilization: A macro, micro, and nanoscale analysis. BMC Musculoskeletal Disorders, 19(1). doi:10.1186/s12891-018-2235-z
  65. Shuang, F., Hou, S., Zhu, J., Liu, Y., Zhou, Y., Zhang, C., & Tang, J. (2015). Establishment of a rat model of lumbar facet joint osteoarthritis using intraarticular injection of urinary plasminogen activator. Scientific Reports, 5(1). doi:10.1038/srep09828
  66. Ita, M. E., Ghimire, P., Welch, R. L., Troche, H. R., & Winkelstein, B. A. (2020). Intra-articular collagenase in the spinal facet joint induces pain, DRG Neuron dysregulation and increased MMP-1 absent evidence of joint destruction. Scientific Reports, 10(1). doi:10.1038/s41598-020-78811-3
  67. Shuang, F., Zhu, J., Song, K., Hou, S., Liu, Y., Zhang, C., & Tang, J. (2014). Establishment of a rat model of adjuvant-induced osteoarthritis of the lumbar facet joint. Cell Biochemistry and Biophysics, 70(3), 1545-1551. doi:10.1007/s12013-014-0091-5
  68. Kim, J. S. , Ahmadinia,K., Li, X., Hamilton, J. L., Andrews, S., Haralampus, Ch. A., ... Im, H.-J. (2015). Development of an experimental animal model for lower back pain by percutaneous injury-induced lumbar facet joint osteoarthritis. Cell Biochemistry and Biophysics, 230 (11), 2837–2847. doi: 10.1002/jcp.25015.
  69. Zhang, N., Tian, F., Gou, Y., Chen, T., Kong, Q., Lv, Q., … Zhang, L. (2019). Protective effect of Alendronate on lumbar facet degeneration in Ovariectomized rats. Medical Science Monitor, 25, 4907-4915. doi:10.12659/msm.916978
  70. Millecamps, M., Tajerian, M., Naso, L., Sage, H. E., & Stone, L. S. (2012). Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain, 153(6), 1167-1179. doi:10.1016/j.pain.2012.01.027
  71. Ohnishi, T., Yamada, K., Iwasaki, K., Tsujimoto, T., Higashi, H., Kimura, T., … Sudo, H. (2019). Caspase-3 knockout inhibits intervertebral disc degeneration related to injury but accelerates degeneration related to aging. Scientific Reports, 9(1). doi:10.1038/s41598-019-55709-3
  72. Xie, W., Zhao, Y., Li, F., Shu, B., Lin, S., Sun, L., … Zheng, H. (2019). Velvet antler polypeptide partially rescue facet joint osteoarthritis-like phenotype in adult β-catenin conditional activation mice. BMC Complementary and Alternative Medicine, 19(1). doi:10.1186/s12906-019-2607-4.
  73. Millecamps, M., Lee, S., Foster, D. Z., & Stone, L. S. (2021). Disc degeneration spreads: Long-term behavioural, histologic and radiologic consequences of a single-level disc injury in active and sedentary mice. European Spine Journal, 30(8), 2238-2246. doi:10.1007/s00586-021-06893-2
  74. Lee, S., Millecamps, M., Foster, D. Z., & Stone, L. S. (2019). Long‐term histological analysis of innervation and macrophage infiltration in a mouse model of intervertebral disc injury–induced low back pain. Journal of Orthopaedic Research, 38(6), 1238-1247. doi:10.1002/jor.24560
  75. Tian, Z., Ma, X., Yasen, M., Mauck, R. L., Qin, L., Shofer, F. S., … Zhang, Y. (2018). Intervertebral disc degeneration in a percutaneous mouse tail injury model. American Journal of Physical Medicine & Rehabilitation, 97(3), 170-177. doi:10.1097/phm.0000000000000818
  76. Yokozeki, Y., Uchida, K., Kawakubo, A., Nakawaki, M., Okubo, T., Miyagi, M., … Takaso, M. (2021). TGF-β regulates nerve growth factor expression in a mouse intervertebral disc injury model. BMC Musculoskeletal Disorders, 22(1). doi:10.1186/s12891-021-04509-w
  77. Piazza, M., Peck, S. H., Gullbrand, S. E., Bendigo, J. R., Arginteanu, T., Zhang, Y., … Smith, L. J. (2018). Quantitative MRI correlates with histological grade in a percutaneous needle injury mouse model of disc degeneration. Journal of Orthopaedic Research®, 36(10), 2771-2779. doi:10.1002/jor.24028
  78. Kerr, G. J., To, B., White, I., Millecamps, M., Beier, F., Grol, M. W., … Séguin, C. A. (2021). Diet-induced obesity leads to behavioral indicators of pain preceding structural joint damage in wild-type mice. Arthritis Research & Therapy, 23(1). doi:10.1186/s13075-021-02463-5
  79. Wu, T., Ni, S., Cao, Y., Liao, S., Hu, J., & Duan, C. (2018). Three-dimensional visualization and pathologic characteristics of cartilage and subchondral bone changes in the lumbar facet joint of an ovariectomized mouse model. The Spine Journal, 18(4), 663-673. doi:10.1016/j.spinee.2017.11.009
  80. Chen, H., Zhu, H., Zhang, K., Chen, K., & Yang, H. (2017). Estrogen deficiency accelerates lumbar facet joints arthritis. Scientific Reports, 7(1). doi:10.1038/s41598-017-01427-7
  81. Ni, S., Cao, Y., Liao, S., Duan, C., Jiang, L., Hu, J., … Wu, T. (2019). Unilateral osteotomy of lumbar facet joint induces a mouse model of lumbar facet joint osteoarthritis. Spine, 44(16), E930-E938. doi:10.1097/brs.0000000000003023
  82. Oichi, T., Taniguchi, Y., Soma, K., Chang, S. H., Yano, F., Tanaka, S., & Saito, T. (2018). A mouse Intervertebral disc degeneration model by surgically induced instability. Spine, 43(10), E557-E564. doi:10.1097/brs.0000000000002427
  83. Liu, S., Wang, Q., Li, Z., Ma, L., Li, T., Li, Y., … Wang, C. (2021). TRPV1 channel activated by the PGE2/EP4 pathway mediates spinal hypersensitivity in a mouse model of vertebral Endplate degeneration. Oxidative Medicine and Cellular Longevity, 2021, 1-16. doi:10.1155/2021/9965737.
  84. Liu, S., Sun, Y., Dong, J., & Bian, Q. (2021). A mouse model of lumbar spine instability. Journal of Visualized Experiments, (170). doi:10.3791/61722-v

How to Cite

Radchenko, V. ., Skidanov, M. ., Ashukina, N. ., Maltseva, V. ., Skidanov, A. ., & Barkov, O. . (2023). Modern approaches to modeling in vivo degenerative spine diseases. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1-2), 108–117. https://doi.org/10.15674/0030-598720221-2108-117

Issue

Section

DIGESTS AND REVIEWS