AGE-RELATED FEATURES OF BONE REGENERATION (LITERATURE REVIEW)
DOI:
https://doi.org/10.15674/0030-59872021392-100Keywords:
Bone healing, aging, bone fracture, growth factor, mesenchymal stem cellAbstract
The number of elderly people is constantly increasing all over the world. They are most often the patients who need orthopedic surgeries like arthroplasty, osteosynthesis and others. It is known
that the process of bone regeneration depends on the patient’s age. However, certain characteristics of bone regeneration process depend on the age remain unclear, which is important for developing
the best strategies for treatment of elderly patients. Objective. Тo identify age-related features of bone regeneration and to establish possible ways of influencing them in order to optimize the bone
regeneration in elderly patients. Methods. Literature search was performed in the PubMed database. Inclusion criteria were original experimental and clinical studies in English. The search depth is accepted for 20 years. Results. It has been experimentally and clinically shown that bone tissue regeneration slows down with age, which is more pronounced in women. According to scientific information, this involves two signaling pathways — Notch and Wnt/β-Catenin, the activity of which is suppressed with age. However, the regulation of regeneration is a cascade of signaling pathways
and macromolecules. The expression of growth factors after fracture changes at older age compared to a younger one. In particular,
a decrease in the expression of TGFβ-1 was clinically revealed. In addition, in older patients after fracture, an increase in macrophage colony-stimulating factor and VEGF was recorded. It has been experimentally established that a combination of a slowdown
in bone tissue regeneration with a decrease in the content of Indian Hedgehog, Sonic Hedgehog, BMP-2, 4, -7 proteins and MMP-9 in bone callus has been established. Among the ways to overcome the delayed bone regeneration in elderly patients can be the use of modern technologies of cell and gene therapy, inhibitors of macrophages, biologically active factors at certain stages of bone regeneration. For cell therapy, it is important to take into account the age of the cell donor because of the high probability of functional disorders in cells from older donors.
References
- United Nations Department of Economic. World Population Ageing 2019. (2020). https://doi.org/10.18356/6a8968ef-en
- Pollock, F. H., Maurer, J. P., Sop, A., Callegai, J., Broce, M., Kali, M., & Spindel, J. F. (2020). Humeral shaft fracture healing rates in older patients. Orthopedics, 43(3), 168-172. https://doi.org/10.3928/01477447-20200213-03
- Makhni, E. C., Ewald, T. J., Kelly, S., & Day, C. S. (2008). Effect of patient age on the radiographic outcomes of distal radius fractures subject to nonoperative treatment. The Journal of Hand Surgery, 33(8), 1301-1308. https://doi.org/10.1016/j.jhsa.2008.04.031
- Stegen, S., Van Gastel, N., & Carmeliet, G. (2015). Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration. Bone, 70, 19-27. https://doi.org/10.1016/j.bone.2014.09.017
- Korzh, N. A., Vorontsov, P. M., Vishnyakova, I. V., & Samoilova, E. M. (2017). Innovative methods for optimizing bone regeneration: platelet-rich plasma (communication 1) (literature review). Orthopedics, traumatology and prosthetics, (3), 123–135. https://doi.org/10.15674/0030-598720173123-135. [in Russian]
- Desai, B. J., Meyer, M. H., Porter, S., Kellam, J. F., & Meyer,, R. A. (2003). The effect of age on gene expression in adult and juvenile rats following femoral fracture. Journal of Orthopaedic Trauma, 17(10), 689-698. https://doi.org/10.1097/00005131-200311000-00005
- Tatsumi, H., Hideshima, K., Kanno, T., Hashimoto, R., Matsumoto, A., Otani, H., & Sekine, J. (2014). Effect of ageing on healing of bilateral mandibular condyle fractures in a rat model. International Journal of Oral and Maxillofacial Surgery, 43(2), 185-193. https://doi.org/10.1016/j.ijom.2013.07.742
- Benatti, B. B., Neto, J. B., Casati, M. Z., Sallum, E. A., Sallum, A. W., & Nociti, F. H. (2006). Periodontal healing may be affected by aging: A histologic study in rats. Journal of Periodontal Research, 41(4), 329-333. https://doi.org/10.1111/j.1600-0765.2006.00872.x
- Lopas, L. A., Belkin, N. S., Mutyaba, P. L., Gray, C. F., Hankenson, K. D., & Ahn, J. (2014). Fractures in geriatric mice show decreased callus expansion and bone volume. Clinical Orthopaedics & Related Research, 472(11), 3523-3532. https://doi.org/10.1007/s11999-014-3829-x
- Tsuji, K., Komori, T., & Noda, M. (2004). Aged mice require full transcription factor, Runx2/Cbfa1, gene dosage for cancellous bone regeneration after bone marrow ablation. Journal of Bone and Mineral Research, 19(9), 1481-1489. https://doi.org/10.1359/jbmr.040601
- Aalami, O. O., Nacamuli, R. P., Lenton, K. A., Cowan, C. M., Fang, T. D., Fong, K. D., ... & Longaker, M. T. (2004). Applications of a mouse model of Calvarial healing: Differences in regenerative abilities of juveniles and adults. Plastic and Reconstructive Surgery, 114(3), 713-720. https://doi.org/10.1097/01.prs.0000131016.12754.30
- Kwan, M. D., Quarto, N., Gupta, D. M., Slater, B. J., Wan, D. C., & Longaker, M. T. (2011). Differential expression of Sclerostin in adult and juvenile mouse Calvariae. Plastic and Reconstructive Surgery, 127(2), 595-602. https://doi.org/10.1097/prs.0b013e3181fed60d
- Joiner, D. M., Tayim, R. J., McElderry, J., Morris, M. D., & Goldstein, S. A. (2013). Aged male rats regenerate cortical bone with reduced Osteocyte density and reduced secretion of nitric oxide after mechanical stimulation. Calcified Tissue International, 94(5), 484-494. https://doi.org/10.1007/s00223-013-9832-5
- Histing, T., Stenger, D., Kuntz, S., Scheuer, C., Tami, A., Garcia, P., ... & Menger, M. D. (2012). Increased osteoblast and osteoclast activity in female senescence-accelerated, Osteoporotic SAMP6 mice during fracture healing. Journal of Surgical Research, 175(2), 271-277. https://doi.org/10.1016/j.jss.2011.03.052
- Egermann, M., Heil, P., Tami, A., Ito, K., Janicki, P., Von Rechenberg, B., Hofstetter, W., & Richards, P. J. (2009). Influence of defective bone marrow osteogenesis on fracture repair in an experimental model of senile osteoporosis. Journal of Orthopaedic Research. https://doi.org/10.1002/jor.21041
- Mehta, M., Strube, P., Peters, A., Perka, C., Hutmacher, D., Fratzl, P., & Duda, G. (2010). Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: Is osteoclast activity the key to age-related impaired healing? Bone, 47(2), 219-228. https://doi.org/10.1016/j.bone.2010.05.029
- Pien, D. M., Olmedo, D. G., & Guglielmotti, M. B. (2001). Influence of age and gender on peri-implant osteogenesis. Age and gender on peri-implant osteogenesis. Acta Odontol. Latinoam, 14(1–2), 9–13.
- Chen, C., Wang, L., Serdar Tulu, U., Arioka, M., Moghim, M. M., Salmon, B., & Helms, J. A. (2018). An osteopenic/osteoporotic phenotype delays alveolar bone repair. Bone, 112, 212-219. https://doi.org/10.1016/j.bone.2018.04.019
- Kruppa, C., Snoap, T., Sietsema, D. L., Schildhauer, T. A., Dudda, M., & Jones, C. B. (2018). Is the midterm progress of pediatric and adolescent talus fractures stratified by age? The Journal of Foot and Ankle Surgery, 57(3), 471-477. https://doi.org/10.1053/j.jfas.2017.10.031
- Meyer, M. H., & Meyer, R. A. (2006). Altered expression of mitochondrial genes in response to fracture in old rats. Acta Orthopaedica, 77(6), 944-951. https://doi.org/10.1080/17453670610013277
- Meyer, M. H., Etienne, W., & Meyer, R. A. (2004). Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study. BMC Musculoskeletal Disorders, 5(1). https://doi.org/10.1186/1471-2474-5-24
- Eriksen, C. G., Olsen, H., Husted, L. B., Sørensen, L., Carstens, M., Søballe, K., & Langdahl, B. L. (2010). The expression of IL-6 by osteoblasts is increased in healthy elderly individuals: Stimulated proliferation and differentiation are unaffected by age. Calcified Tissue International, 87(5), 414-423. https://doi.org/10.1007/s00223-010-9412-x
- Kaiser, G., Thomas, A., Köttstorfer, J., Kecht, M., & Sarahrudi, K. (2012). Is the expression of transforming growth factor-beta1 after fracture of long bones solely influenced by the healing process? International Orthopaedics, 36(10), 2173-2179. https://doi.org/10.1007/s00264-012-1575-9
- Köttstorfer, J., Kaiser, G., Thomas, A., Gregori, M., Kecht, M., Domaszewski, F., & Sarahrudi, K. (2013). The influence of non-osteogenic factors on the expression of M-CSF and VEGF during fracture healing. Injury, 44(7), 930-934. https://doi.org/10.1016/j.injury.2013.02.028
- Meyer, R. A., Meyer, M. H., Tenholder, M., Wondracek, S., Wasserman, R., & Garges, P. (2003). Gene expression in older rats with delayed union of femoral fractures. The Journal of Bone and Joint Surgery-American Volume, 85(7), 1243-1254. https://doi.org/10.2106/00004623-200307000-00010
- Yue, B., Lu, B., Dai, K. R., Zhang, X. L., Yu, C. F., Lou, J. R., & Tang, T. T. (2005). BMP2Gene therapy on the repair of bone defects of aged rats. Calcified Tissue International, 77(6), 395-403. https://doi.org/10.1007/s00223-005-0180-y
- Wan, D. C., Kwan, M. D., Gupta, D. M., Wang, Z., Slater, B. J., Panetta, N. J., Morrell, N. T., & Longaker, M. T. (2008). Global age-dependent differences in gene expression in response to Calvarial injury. Journal of Craniofacial Surgery, 19(5), 1292-1301. https://doi.org/10.1097/scs.0b013e3181843609
- Liu, X., McKenzie, J. A., Maschhoff, C. W., Gardner, M. J., & Silva, M. J. (2017). Exogenous hedgehog antagonist delays but does not prevent fracture healing in young mice. Bone, 103, 241-251. https://doi.org/10.1016/j.bone.2017.07.017
- Matsumoto, K., Shimo, T., & Kurio, N. (2016). Expression and role of Sonic Hedgehog in the process of fracture healing with aging. In Vivo, 30(2), 99–105
- Mutyaba, P. L., Belkin, N. S., Lopas, L., Gray, C. F., Dopkin, D., Hankenson, K. D., & Ahn, J. (2014). Notch signaling in Mesenchymal stem cells harvested from geriatric mice. Journal of Orthopaedic Trauma, 28(Supplement 1), S20-S23. https://doi.org/10.1097/bot.0000000000000064
- Lu, C., Hansen, E., Sapozhnikova, A., Hu, D., Miclau, T., & Marcucio, R. S. (2008). Effect of age on vascularization during fracture repair. Journal of Orthopaedic Research, 26(10), 1384-1389. https://doi.org/10.1002/jor.20667
- Ode, A., Duda, G. N., Geissler, S., Pauly, S., Ode, J., Perka, C., & Strube, P. (2014). Interaction of age and mechanical stability on bone defect healing: An early transcriptional analysis of fracture Hematoma in rat. PLoS ONE, 9(9), e106462. https://doi.org/10.1371/journal.pone.0106462
- Li, M., Healy, D., Li, Y., Simmons, H., Crawford, D., Ke, H., ... & Thompson, D. (2005). Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone, 37(1), 46-54. https://doi.org/10.1016/j.bone.2005.03.016
- Bradaschia-Correa, V., Josephson, A. M., Egol, A. J., Mizrahi, M. M., Leclerc, K., Huo, J., Cronstein, B. N., & Leucht, P. (2017). Ecto-5′-nucleotidase (CD73) regulates bone formation and remodeling during intramembranous bone repair in aging mice. Tissue and Cell, 49(5), 545-551. https://doi.org/10.1016/j.tice.2017.07.001
- Liu, D., Qin, H., Yang, J., Yang, L., He, S., Chen, S., ... & Zong, Z. (2020). Different effects of Wnt/β-catenin activation and PTH activation in adult and aged male mice metaphyseal fracture healing. BMC Musculoskeletal Disorders, 21(1). https://doi.org/10.1186/s12891-020-3138-3
- Abdallah, B. M., Haack-Sørensen, M., Fink, T., & Kassem, M. (2006). Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone, 39(1), 181-188. https://doi.org/10.1016/j.bone.2005.12.082
- Singh, L., Brennan, T. A., Russell, E., Kim, J., Chen, Q., Brad Johnson, F., & Pignolo, R. J. (2016). Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone, 85, 29-36. https://doi.org/10.1016/j.bone.2016.01.014
- Maupin, K. A., Himes, E. R., Plett, A. P., Chua, H. L., Singh, P., Ghosh, J., ... & Kacena, M. A. (2019). Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. Bone, 127, 452-459. https://doi.org/10.1016/j.bone.2019.07.010
- Tiede-Lewis, L. M., Xie, Y., Hulbert, M. A., Campos, R., Dallas, M. R., Dusevich, V., Bonewald, L. F., & Dallas, S. L. (2017). Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging, 9(10), 2190-2208. https://doi.org/10.18632/aging.101308
- Morrell, A. E., Robinson, S. T., Silva, M. J., & Guo, X. E. (2020). Mechanosensitive Ca2+ signaling and coordination is diminished in osteocytes of aged mice during ex vivo tibial loading. Connective Tissue Research, 61(3-4), 389-398. https://doi.org/10.1080/03008207.2020.1712377
- Hagan, M. L., Yu, K., Zhu, J., Vinson, B. N., Roberts, R. L., Montesinos Cartagena, M., ... & McGee‐Lawrence, M. E. (2019). Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton. Aging Cell, 19(1). https://doi.org/10.1111/acel.13056
- Kim, H., Xiong, J., MacLeod, R. S., Iyer, S., Fujiwara, Y., Cawley, K. M., ... & O’Brien, C. A. (2020). Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight, 5(19). https://doi.org/10.1172/jci.insight.138815
- Kim, H., Chang, J., Iyer, S., Han, L., Campisi, J., Manolagas, S. C., Zhou, D., & Almeida, M. (2019). Elimination of senescent osteoclast progenitors has no effect on the age associated loss of bone mass in mice. Aging Cell, 18(3). https://doi.org/10.1111/acel.12923
- Jilka, R. L., O'Brien, C. A., Roberson, P. K., Bonewald, L. F., Weinstein, R. S., & Manolagas, S. C. (2013). Dysapoptosis of osteoblasts and Osteocytes increases cancellous bone formation but exaggerates cortical porosity with age. Journal of Bone and Mineral Research, 29(1), 103-117. https://doi.org/10.1002/jbmr.2007
- Henriksen, K., Leeming, D. J., Byrjalsen, I., Nielsen, R. H., Sorensen, M. G., Dziegiel, M. H., ... & Karsdal, M. A. (2007). Osteoclasts prefer aged bone. Osteoporosis International, 18(6), 751-759. https://doi.org/10.1007/s00198-006-0298-4
- Møller, A. M., Delaissé, J., Olesen, J. B., Canto, L. M., Rogatto, S. R., Madsen, J. S., & Søe, K. (2020). Fusion potential of human osteoclasts in vitro reflects age, menopause, and in vivo bone resorption levels of their donors—A possible involvement of DC-STAMP. International Journal of Molecular Sciences, 21(17), 6368. https://doi.org/10.3390/ijms21176368
- Dobson, P. F., Dennis, E. P., Hipps, D., Reeve, A., Laude, A., Bradshaw, C., ... & Greaves, L. C. (2020). Mitochondrial dysfunction impairs osteogenesis, increases osteoclast activity, and accelerates age related bone loss. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68566-2
- Ota, K., Quint, P., Ruan, M., Pederson, L., Westendorf, J. J., Khosla, S., & Oursler, M. J. (2013). Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. Journal of Cellular Biochemistry, 114(8), 1901-1907. https://doi.org/10.1002/jcb.24537
- Weiss, O. I., Caton, J., Blieden, T., Fisher, S. G., Trafton, S., & Hart, T. C. (2004). Effect of the interleukin-1 genotype on outcomes of regenerative periodontal therapy with bone replacement grafts. Journal of Periodontology, 75(10), 1335-1342. https://doi.org/10.1902/jop.2004.75.10.1335
- Morihara, T., Harwood, F., Goomer, R., Hirasawa, Y., & Amiel, D. (2002). Tissue-engineered repair of osteochondral defects: effects of the age of donor cells and host tissue. Tissue Engineering, 8(6), 921-929. https://doi.org/10.1089/107632702320934029
- Liu, H., Chiou, J., Wu, A. T., Tsai, C., Leu, J., Ting, L., ... & Deng, W. (2012). The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells. Biomaterials, 33(26), 6105-6112. https://doi.org/10.1016/j.biomaterials.2012.05.024
- Leonardi, E., Devescovi, V., Perut, F., Ciapetti, G., & Giunti, A. (2008). Isolation, characterisation and osteogenic potential of human bone marrow stromal cells derived from the medullary cavity of the femur. La Chirurgia degli Organi di Movimento, 92(2), 97-103. https://doi.org/10.1007/s12306-008-0057-0
- Cei, S., Kandler, B., Fügl, A., Gabriele, M., Hollinger, J. O., Watzek, G., & Gruber, R. (2006). Bone marrow Stromal cells of young and adult rats respond similarly to platelet-released supernatant and bone morphogenetic protein-6 in vitro. Journal of Periodontology, 77(4), 699-706. https://doi.org/10.1902/jop.2006.050155
- Hollinger, J. O., Onikepe, A. O., MacKrell, J., Einhorn, T., Bradica, G., Lynch, S., & Hart, C. E. (2008). Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-bb and an injectable beta-tricalcium phosphate/collagen matrix. Journal of Orthopaedic Research, 26(1), 83-90. https://doi.org/10.1002/jor.20453
- Sumner, D., Turner, T., Cohen, M., Losavio, P., Urban, R., Nichols, E., & McPherson, J. (2003). Aging does not lessen the effectiveness of tgfβ2-enhanced bone regeneration. Journal of Bone and Mineral Research, 18(4), 730-736. https://doi.org/10.1359/jbmr.2003.18.4.730
- Slade Shantz, J. A., Yu, Y., Andres, W., Miclau, T., & Marcucio, R. (2014). Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice. Journal of Orthopaedic Trauma, 28(Supplement 1), S10-S14. https://doi.org/10.1097/bot.0000000000000062
- Clark, D., Brazina, S., Yang, F., Hu, D., Hsieh, C. L., Niemi, E. C., ... & Marcucio, R. (2020). Age‐related changes to macrophages are detrimental to fracture healing in mice. Aging Cell, 19(3). https://doi.org/10.1111/acel.13112
- Xing, Z., Lu, C., Hu, D., Miclau, T., & Marcucio, R. S. (2010). Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. Journal of Orthopaedic Research, 28(8), 1000-1006. https://doi.org/10.1002/jor.21087
- Gao, X., Lu, A., Tang, Y., Schneppendahl, J., Liebowitz, A. B., Scibetta, A. C., ... & Huard, J. (2018). Influences of donor and host age on human muscle-derived stem cell-mediated bone regeneration. Stem Cell Research & Therapy, 9(1). https://doi.org/10.1186/s13287-018-1066-z
- Löffler, J., Sass, F. A., Filter, S., Rose, A., Ellinghaus, A., Duda, G. N., & Dienelt, A. (2019). Compromised bone healing in aged rats is associated with impaired M2 macrophage function. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02443
- Huang, R., Zong, X., Nadesan, P., Huebner, J. L., Kraus, V. B., White, J. P., White, P. J., & Baht, G. S. (2019). Lowering circulating apolipoprotein E levels improves aged bone fracture healing. JCI Insight, 4(18). https://doi.org/10.1172/jci.insight.129144
- Schwartz, Z., Somers, A., Mellonig, J., Carnes, D., Dean, D., Cochran, D., & Boyan, B. (1998). Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. Journal of Periodontology, 69(4), 470-478. https://doi.org/10.1902/jop.1998.69.4.470
- Torricelli, P., Fini, M., Giavaresi, G., Rimondini, L., & Giardino, R. (2002). Characterization of bone defect repair in young and aged rat femur induced by Xenogenic demineralized bone matrix. Journal of Periodontology, 73(9), 1003-1009. https://doi.org/10.1902/jop.2002.73.9.1003
Downloads
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).