AGE-RELATED FEATURES OF BONE REGENERATION (LITERATURE REVIEW)

Authors

DOI:

https://doi.org/10.15674/0030-59872021392-100

Keywords:

Bone healing, aging, bone fracture, growth factor, mesenchymal stem cell

Abstract

The number of elderly people is constantly increasing all over the world. They are most often the patients who need orthopedic surgeries like arthroplasty, osteosynthesis and others. It is known
that the process of bone regeneration depends on the patient’s age. However, certain characteristics of bone regeneration process depend on the age remain unclear, which is important for developing
the best strategies for treatment of elderly patients. Objective. Тo identify age-related features of bone regeneration and to establish possible ways of influencing them in order to optimize the bone
regeneration in elderly patients. Methods. Literature search was performed in the PubMed database. Inclusion criteria were original experimental and clinical studies in English. The search depth is accepted for 20 years. Results. It has been experimentally and clinically shown that bone tissue regeneration slows down with age, which is more pronounced in women. According to scientific information, this involves two signaling pathways — Notch and Wnt/β-Catenin, the activity of which is suppressed with age. However, the regulation of regeneration is a cascade of signaling pathways
and macromolecules. The expression of growth factors after fracture changes at older age compared to a younger one. In particular,
a decrease in the expression of TGFβ-1 was clinically revealed. In addition, in older patients after fracture, an increase in macrophage colony-stimulating factor and VEGF was recorded. It has been experimentally established that a combination of a slowdown
in bone tissue regeneration with a decrease in the content of Indian Hedgehog, Sonic Hedgehog, BMP-2, 4, -7 proteins and MMP-9 in bone callus has been established. Among the ways to overcome the delayed bone regeneration in elderly patients can be the use of modern technologies of cell and gene therapy, inhibitors of macrophages, biologically active factors at certain stages of bone regeneration. For cell therapy, it is important to take into account the age of the cell donor because of the high probability of functional disorders in cells from older donors.

Author Biographies

Mykola Korzh, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Traumatology and Orthopaedics

Petro Vorontsov, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, PhD in Traumatology and Orthopaedics

Nataliya Ashukina, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Biol. Sci.

Valentyna Maltseva, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

Phd in Biol. Sci.

References

  1. United Nations Department of Economic. World Population Ageing 2019. (2020). https://doi.org/10.18356/6a8968ef-en
  2. Pollock, F. H., Maurer, J. P., Sop, A., Callegai, J., Broce, M., Kali, M., & Spindel, J. F. (2020). Humeral shaft fracture healing rates in older patients. Orthopedics, 43(3), 168-172. https://doi.org/10.3928/01477447-20200213-03
  3. Makhni, E. C., Ewald, T. J., Kelly, S., & Day, C. S. (2008). Effect of patient age on the radiographic outcomes of distal radius fractures subject to nonoperative treatment. The Journal of Hand Surgery, 33(8), 1301-1308. https://doi.org/10.1016/j.jhsa.2008.04.031
  4. Stegen, S., Van Gastel, N., & Carmeliet, G. (2015). Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration. Bone, 70, 19-27. https://doi.org/10.1016/j.bone.2014.09.017
  5. Korzh, N. A., Vorontsov, P. M., Vishnyakova, I. V., & Samoilova, E. M. (2017). Innovative methods for optimizing bone regeneration: platelet-rich plasma (communication 1) (literature review). Orthopedics, traumatology and prosthetics, (3), 123–135. https://doi.org/10.15674/0030-598720173123-135. [in Russian]
  6. Desai, B. J., Meyer, M. H., Porter, S., Kellam, J. F., & Meyer,, R. A. (2003). The effect of age on gene expression in adult and juvenile rats following femoral fracture. Journal of Orthopaedic Trauma, 17(10), 689-698. https://doi.org/10.1097/00005131-200311000-00005
  7. Tatsumi, H., Hideshima, K., Kanno, T., Hashimoto, R., Matsumoto, A., Otani, H., & Sekine, J. (2014). Effect of ageing on healing of bilateral mandibular condyle fractures in a rat model. International Journal of Oral and Maxillofacial Surgery, 43(2), 185-193. https://doi.org/10.1016/j.ijom.2013.07.742
  8. Benatti, B. B., Neto, J. B., Casati, M. Z., Sallum, E. A., Sallum, A. W., & Nociti, F. H. (2006). Periodontal healing may be affected by aging: A histologic study in rats. Journal of Periodontal Research, 41(4), 329-333. https://doi.org/10.1111/j.1600-0765.2006.00872.x
  9. Lopas, L. A., Belkin, N. S., Mutyaba, P. L., Gray, C. F., Hankenson, K. D., & Ahn, J. (2014). Fractures in geriatric mice show decreased callus expansion and bone volume. Clinical Orthopaedics & Related Research, 472(11), 3523-3532. https://doi.org/10.1007/s11999-014-3829-x
  10. Tsuji, K., Komori, T., & Noda, M. (2004). Aged mice require full transcription factor, Runx2/Cbfa1, gene dosage for cancellous bone regeneration after bone marrow ablation. Journal of Bone and Mineral Research, 19(9), 1481-1489. https://doi.org/10.1359/jbmr.040601
  11. Aalami, O. O., Nacamuli, R. P., Lenton, K. A., Cowan, C. M., Fang, T. D., Fong, K. D., ... & Longaker, M. T. (2004). Applications of a mouse model of Calvarial healing: Differences in regenerative abilities of juveniles and adults. Plastic and Reconstructive Surgery, 114(3), 713-720. https://doi.org/10.1097/01.prs.0000131016.12754.30
  12. Kwan, M. D., Quarto, N., Gupta, D. M., Slater, B. J., Wan, D. C., & Longaker, M. T. (2011). Differential expression of Sclerostin in adult and juvenile mouse Calvariae. Plastic and Reconstructive Surgery, 127(2), 595-602. https://doi.org/10.1097/prs.0b013e3181fed60d
  13. Joiner, D. M., Tayim, R. J., McElderry, J., Morris, M. D., & Goldstein, S. A. (2013). Aged male rats regenerate cortical bone with reduced Osteocyte density and reduced secretion of nitric oxide after mechanical stimulation. Calcified Tissue International, 94(5), 484-494. https://doi.org/10.1007/s00223-013-9832-5
  14. Histing, T., Stenger, D., Kuntz, S., Scheuer, C., Tami, A., Garcia, P., ... & Menger, M. D. (2012). Increased osteoblast and osteoclast activity in female senescence-accelerated, Osteoporotic SAMP6 mice during fracture healing. Journal of Surgical Research, 175(2), 271-277. https://doi.org/10.1016/j.jss.2011.03.052
  15. Egermann, M., Heil, P., Tami, A., Ito, K., Janicki, P., Von Rechenberg, B., Hofstetter, W., & Richards, P. J. (2009). Influence of defective bone marrow osteogenesis on fracture repair in an experimental model of senile osteoporosis. Journal of Orthopaedic Research. https://doi.org/10.1002/jor.21041
  16. Mehta, M., Strube, P., Peters, A., Perka, C., Hutmacher, D., Fratzl, P., & Duda, G. (2010). Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: Is osteoclast activity the key to age-related impaired healing? Bone, 47(2), 219-228. https://doi.org/10.1016/j.bone.2010.05.029
  17. Pien, D. M., Olmedo, D. G., & Guglielmotti, M. B. (2001). Influence of age and gender on peri-implant osteogenesis. Age and gender on peri-implant osteogenesis. Acta Odontol. Latinoam, 14(1–2), 9–13.
  18. Chen, C., Wang, L., Serdar Tulu, U., Arioka, M., Moghim, M. M., Salmon, B., & Helms, J. A. (2018). An osteopenic/osteoporotic phenotype delays alveolar bone repair. Bone, 112, 212-219. https://doi.org/10.1016/j.bone.2018.04.019
  19. Kruppa, C., Snoap, T., Sietsema, D. L., Schildhauer, T. A., Dudda, M., & Jones, C. B. (2018). Is the midterm progress of pediatric and adolescent talus fractures stratified by age? The Journal of Foot and Ankle Surgery, 57(3), 471-477. https://doi.org/10.1053/j.jfas.2017.10.031
  20. Meyer, M. H., & Meyer, R. A. (2006). Altered expression of mitochondrial genes in response to fracture in old rats. Acta Orthopaedica, 77(6), 944-951. https://doi.org/10.1080/17453670610013277
  21. Meyer, M. H., Etienne, W., & Meyer, R. A. (2004). Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study. BMC Musculoskeletal Disorders, 5(1). https://doi.org/10.1186/1471-2474-5-24
  22. Eriksen, C. G., Olsen, H., Husted, L. B., Sørensen, L., Carstens, M., Søballe, K., & Langdahl, B. L. (2010). The expression of IL-6 by osteoblasts is increased in healthy elderly individuals: Stimulated proliferation and differentiation are unaffected by age. Calcified Tissue International, 87(5), 414-423. https://doi.org/10.1007/s00223-010-9412-x
  23. Kaiser, G., Thomas, A., Köttstorfer, J., Kecht, M., & Sarahrudi, K. (2012). Is the expression of transforming growth factor-beta1 after fracture of long bones solely influenced by the healing process? International Orthopaedics, 36(10), 2173-2179. https://doi.org/10.1007/s00264-012-1575-9
  24. Köttstorfer, J., Kaiser, G., Thomas, A., Gregori, M., Kecht, M., Domaszewski, F., & Sarahrudi, K. (2013). The influence of non-osteogenic factors on the expression of M-CSF and VEGF during fracture healing. Injury, 44(7), 930-934. https://doi.org/10.1016/j.injury.2013.02.028
  25. Meyer, R. A., Meyer, M. H., Tenholder, M., Wondracek, S., Wasserman, R., & Garges, P. (2003). Gene expression in older rats with delayed union of femoral fractures. The Journal of Bone and Joint Surgery-American Volume, 85(7), 1243-1254. https://doi.org/10.2106/00004623-200307000-00010
  26. Yue, B., Lu, B., Dai, K. R., Zhang, X. L., Yu, C. F., Lou, J. R., & Tang, T. T. (2005). BMP2Gene therapy on the repair of bone defects of aged rats. Calcified Tissue International, 77(6), 395-403. https://doi.org/10.1007/s00223-005-0180-y
  27. Wan, D. C., Kwan, M. D., Gupta, D. M., Wang, Z., Slater, B. J., Panetta, N. J., Morrell, N. T., & Longaker, M. T. (2008). Global age-dependent differences in gene expression in response to Calvarial injury. Journal of Craniofacial Surgery, 19(5), 1292-1301. https://doi.org/10.1097/scs.0b013e3181843609
  28. Liu, X., McKenzie, J. A., Maschhoff, C. W., Gardner, M. J., & Silva, M. J. (2017). Exogenous hedgehog antagonist delays but does not prevent fracture healing in young mice. Bone, 103, 241-251. https://doi.org/10.1016/j.bone.2017.07.017
  29. Matsumoto, K., Shimo, T., & Kurio, N. (2016). Expression and role of Sonic Hedgehog in the process of fracture healing with aging. In Vivo, 30(2), 99–105
  30. Mutyaba, P. L., Belkin, N. S., Lopas, L., Gray, C. F., Dopkin, D., Hankenson, K. D., & Ahn, J. (2014). Notch signaling in Mesenchymal stem cells harvested from geriatric mice. Journal of Orthopaedic Trauma, 28(Supplement 1), S20-S23. https://doi.org/10.1097/bot.0000000000000064
  31. Lu, C., Hansen, E., Sapozhnikova, A., Hu, D., Miclau, T., & Marcucio, R. S. (2008). Effect of age on vascularization during fracture repair. Journal of Orthopaedic Research, 26(10), 1384-1389. https://doi.org/10.1002/jor.20667
  32. Ode, A., Duda, G. N., Geissler, S., Pauly, S., Ode, J., Perka, C., & Strube, P. (2014). Interaction of age and mechanical stability on bone defect healing: An early transcriptional analysis of fracture Hematoma in rat. PLoS ONE, 9(9), e106462. https://doi.org/10.1371/journal.pone.0106462
  33. Li, M., Healy, D., Li, Y., Simmons, H., Crawford, D., Ke, H., ... & Thompson, D. (2005). Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone, 37(1), 46-54. https://doi.org/10.1016/j.bone.2005.03.016
  34. Bradaschia-Correa, V., Josephson, A. M., Egol, A. J., Mizrahi, M. M., Leclerc, K., Huo, J., Cronstein, B. N., & Leucht, P. (2017). Ecto-5′-nucleotidase (CD73) regulates bone formation and remodeling during intramembranous bone repair in aging mice. Tissue and Cell, 49(5), 545-551. https://doi.org/10.1016/j.tice.2017.07.001
  35. Liu, D., Qin, H., Yang, J., Yang, L., He, S., Chen, S., ... & Zong, Z. (2020). Different effects of Wnt/β-catenin activation and PTH activation in adult and aged male mice metaphyseal fracture healing. BMC Musculoskeletal Disorders, 21(1). https://doi.org/10.1186/s12891-020-3138-3
  36. Abdallah, B. M., Haack-Sørensen, M., Fink, T., & Kassem, M. (2006). Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone, 39(1), 181-188. https://doi.org/10.1016/j.bone.2005.12.082
  37. Singh, L., Brennan, T. A., Russell, E., Kim, J., Chen, Q., Brad Johnson, F., & Pignolo, R. J. (2016). Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone, 85, 29-36. https://doi.org/10.1016/j.bone.2016.01.014
  38. Maupin, K. A., Himes, E. R., Plett, A. P., Chua, H. L., Singh, P., Ghosh, J., ... & Kacena, M. A. (2019). Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. Bone, 127, 452-459. https://doi.org/10.1016/j.bone.2019.07.010
  39. Tiede-Lewis, L. M., Xie, Y., Hulbert, M. A., Campos, R., Dallas, M. R., Dusevich, V., Bonewald, L. F., & Dallas, S. L. (2017). Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging, 9(10), 2190-2208. https://doi.org/10.18632/aging.101308
  40. Morrell, A. E., Robinson, S. T., Silva, M. J., & Guo, X. E. (2020). Mechanosensitive Ca2+ signaling and coordination is diminished in osteocytes of aged mice during ex vivo tibial loading. Connective Tissue Research, 61(3-4), 389-398. https://doi.org/10.1080/03008207.2020.1712377
  41. Hagan, M. L., Yu, K., Zhu, J., Vinson, B. N., Roberts, R. L., Montesinos Cartagena, M., ... & McGee‐Lawrence, M. E. (2019). Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton. Aging Cell, 19(1). https://doi.org/10.1111/acel.13056
  42. Kim, H., Xiong, J., MacLeod, R. S., Iyer, S., Fujiwara, Y., Cawley, K. M., ... & O’Brien, C. A. (2020). Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight, 5(19). https://doi.org/10.1172/jci.insight.138815
  43. Kim, H., Chang, J., Iyer, S., Han, L., Campisi, J., Manolagas, S. C., Zhou, D., & Almeida, M. (2019). Elimination of senescent osteoclast progenitors has no effect on the age associated loss of bone mass in mice. Aging Cell, 18(3). https://doi.org/10.1111/acel.12923
  44. Jilka, R. L., O'Brien, C. A., Roberson, P. K., Bonewald, L. F., Weinstein, R. S., & Manolagas, S. C. (2013). Dysapoptosis of osteoblasts and Osteocytes increases cancellous bone formation but exaggerates cortical porosity with age. Journal of Bone and Mineral Research, 29(1), 103-117. https://doi.org/10.1002/jbmr.2007
  45. Henriksen, K., Leeming, D. J., Byrjalsen, I., Nielsen, R. H., Sorensen, M. G., Dziegiel, M. H., ... & Karsdal, M. A. (2007). Osteoclasts prefer aged bone. Osteoporosis International, 18(6), 751-759. https://doi.org/10.1007/s00198-006-0298-4
  46. Møller, A. M., Delaissé, J., Olesen, J. B., Canto, L. M., Rogatto, S. R., Madsen, J. S., & Søe, K. (2020). Fusion potential of human osteoclasts in vitro reflects age, menopause, and in vivo bone resorption levels of their donors—A possible involvement of DC-STAMP. International Journal of Molecular Sciences, 21(17), 6368. https://doi.org/10.3390/ijms21176368
  47. Dobson, P. F., Dennis, E. P., Hipps, D., Reeve, A., Laude, A., Bradshaw, C., ... & Greaves, L. C. (2020). Mitochondrial dysfunction impairs osteogenesis, increases osteoclast activity, and accelerates age related bone loss. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68566-2
  48. Ota, K., Quint, P., Ruan, M., Pederson, L., Westendorf, J. J., Khosla, S., & Oursler, M. J. (2013). Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. Journal of Cellular Biochemistry, 114(8), 1901-1907. https://doi.org/10.1002/jcb.24537
  49. Weiss, O. I., Caton, J., Blieden, T., Fisher, S. G., Trafton, S., & Hart, T. C. (2004). Effect of the interleukin-1 genotype on outcomes of regenerative periodontal therapy with bone replacement grafts. Journal of Periodontology, 75(10), 1335-1342. https://doi.org/10.1902/jop.2004.75.10.1335
  50. Morihara, T., Harwood, F., Goomer, R., Hirasawa, Y., & Amiel, D. (2002). Tissue-engineered repair of osteochondral defects: effects of the age of donor cells and host tissue. Tissue Engineering, 8(6), 921-929. https://doi.org/10.1089/107632702320934029
  51. Liu, H., Chiou, J., Wu, A. T., Tsai, C., Leu, J., Ting, L., ... & Deng, W. (2012). The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells. Biomaterials, 33(26), 6105-6112. https://doi.org/10.1016/j.biomaterials.2012.05.024
  52. Leonardi, E., Devescovi, V., Perut, F., Ciapetti, G., & Giunti, A. (2008). Isolation, characterisation and osteogenic potential of human bone marrow stromal cells derived from the medullary cavity of the femur. La Chirurgia degli Organi di Movimento, 92(2), 97-103. https://doi.org/10.1007/s12306-008-0057-0
  53. Cei, S., Kandler, B., Fügl, A., Gabriele, M., Hollinger, J. O., Watzek, G., & Gruber, R. (2006). Bone marrow Stromal cells of young and adult rats respond similarly to platelet-released supernatant and bone morphogenetic protein-6 in vitro. Journal of Periodontology, 77(4), 699-706. https://doi.org/10.1902/jop.2006.050155
  54. Hollinger, J. O., Onikepe, A. O., MacKrell, J., Einhorn, T., Bradica, G., Lynch, S., & Hart, C. E. (2008). Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-bb and an injectable beta-tricalcium phosphate/collagen matrix. Journal of Orthopaedic Research, 26(1), 83-90. https://doi.org/10.1002/jor.20453
  55. Sumner, D., Turner, T., Cohen, M., Losavio, P., Urban, R., Nichols, E., & McPherson, J. (2003). Aging does not lessen the effectiveness of tgfβ2-enhanced bone regeneration. Journal of Bone and Mineral Research, 18(4), 730-736. https://doi.org/10.1359/jbmr.2003.18.4.730
  56. Slade Shantz, J. A., Yu, Y., Andres, W., Miclau, T., & Marcucio, R. (2014). Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice. Journal of Orthopaedic Trauma, 28(Supplement 1), S10-S14. https://doi.org/10.1097/bot.0000000000000062
  57. Clark, D., Brazina, S., Yang, F., Hu, D., Hsieh, C. L., Niemi, E. C., ... & Marcucio, R. (2020). Age‐related changes to macrophages are detrimental to fracture healing in mice. Aging Cell, 19(3). https://doi.org/10.1111/acel.13112
  58. Xing, Z., Lu, C., Hu, D., Miclau, T., & Marcucio, R. S. (2010). Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. Journal of Orthopaedic Research, 28(8), 1000-1006. https://doi.org/10.1002/jor.21087
  59. Gao, X., Lu, A., Tang, Y., Schneppendahl, J., Liebowitz, A. B., Scibetta, A. C., ... & Huard, J. (2018). Influences of donor and host age on human muscle-derived stem cell-mediated bone regeneration. Stem Cell Research & Therapy, 9(1). https://doi.org/10.1186/s13287-018-1066-z
  60. Löffler, J., Sass, F. A., Filter, S., Rose, A., Ellinghaus, A., Duda, G. N., & Dienelt, A. (2019). Compromised bone healing in aged rats is associated with impaired M2 macrophage function. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02443
  61. Huang, R., Zong, X., Nadesan, P., Huebner, J. L., Kraus, V. B., White, J. P., White, P. J., & Baht, G. S. (2019). Lowering circulating apolipoprotein E levels improves aged bone fracture healing. JCI Insight, 4(18). https://doi.org/10.1172/jci.insight.129144
  62. Schwartz, Z., Somers, A., Mellonig, J., Carnes, D., Dean, D., Cochran, D., & Boyan, B. (1998). Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. Journal of Periodontology, 69(4), 470-478. https://doi.org/10.1902/jop.1998.69.4.470
  63. Torricelli, P., Fini, M., Giavaresi, G., Rimondini, L., & Giardino, R. (2002). Characterization of bone defect repair in young and aged rat femur induced by Xenogenic demineralized bone matrix. Journal of Periodontology, 73(9), 1003-1009. https://doi.org/10.1902/jop.2002.73.9.1003

How to Cite

Korzh, M., Vorontsov, P., Ashukina, . N., & Maltseva, V. . (2023). AGE-RELATED FEATURES OF BONE REGENERATION (LITERATURE REVIEW). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3), 92–100. https://doi.org/10.15674/0030-59872021392-100

Issue

Section

DIGESTS AND REVIEWS