MRI analysis of ACL tendon graft Intracanal Incorporation with polypropylene mesh implantation
DOI:
https://doi.org/10.15674/0030-59872021123-33Keywords:
Knee joint, anterior cruciate ligament, arthroscopyAbstract
Hamstring tendon graft remains one of the most popular for ACL reconstruction (ACLR). However, its disadvantage is long term ligamentation process and intracanal incorporation and delayed rehabilitation. One of the methods for stimulation of connective tissue growth is the implantation of polypropylene mesh (PPM), which are widely used in hernioplasty. Objective. To compare the MRI data dynamics of intracanal incorporation of tendon graft with implantation of PPM in bone canals. Methods. For evaluation of graft reconstruction in the femoral and tibial canals we used criteria based on the analysis of MRI images in PD FS and STIR sequences: the nature of the signal from the graft in the center of bone canal; general view of the graft; the nature of the MRI signal from the tissues around the graft on the tendons-bone border; the presence of synovial fluid in the canals and bone edema around them. Results of MRI of 75 patients who underwent «all-inside» ACLR with semitendinosus graft were analyzed. In the study group (40 patients) were compared to control group (35 patients) additionally implanted PPM around the ends of the tendon graft. Results. Intracanal graft incorporation in the group of patients with implantation of PPM occurred faster. The nature of the signal from the center of the bone canal and on the bone-tendon border progressed significantly faster in all observed terms. In the research group there was not presence of synovial fluid in the canals along the graft. Conclusions. Implantation of PPM around the ends of the ACL tendon autograft immersed in bone canals, leads, according to MRI data, to faster intra-canal incorporation. Key words. Knee joint, anterior cruciate ligament, arthroscopy.
References
- Golovakha, M. L., Krasnoperov, S. N., & Titarchuk, R. V. (2017). Results of the reconstruction of the anterior cruciate ligament using the «all inside» technology. Orthopedics, Traumatology and Prosthetics, 2(607), 84–91. https://doi.org/10.15674/0030-59872017284-91. [in Russian]
- Gohil, S., Annear, P. O., & Breidahl, W. (2007). Anterior cruciate ligament reconstruction using autologous double hamstrings: A comparison of standardversusminimal debridement techniques using MRI to assess revascularisation. The Journal of Bone and Joint Surgery. British volume, 89-B(9), 1165-1171. https://doi.org/10.1302/0301-620x.89b9.19339
- Magnitskaya, N., Mouton, C., Gokeler, A., Nuehrenboerger, C., Pape, D., & Seil, R. (2019). Younger age and hamstring tendon Graft are associated with higher IKDC 2000 and KOOS scores during the first year after ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 28(3), 823-832. https://doi.org/10.1007/s00167-019-05516-0
- Chen, C. (2009). Graft healing in anterior cruciate ligament reconstruction. BMC Sports Science, Medicine and Rehabilitation, 1(1). https://doi.org/10.1186/1758-2555-1-21
- Ishibashi, Y., Toh, S., Okamura, Y., Sasaki, T., & Kusumi, T. (2001). Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. The American Journal of Sports Medicine, 29(4), 473-479. https://doi.org/10.1177/03635465010290041601
- Li, H., Tao, H., Cho, S., Chen, S., Yao, Z., & Chen, S. (2012). Difference in Graft maturity of the reconstructed anterior cruciate ligament 2 years Postoperatively. The American Journal of Sports Medicine, 40(7), 1519-1526. https://doi.org/10.1177/0363546512443050
- Ntoulia, A., Papadopoulou, F., Ristanis, S., Argyropoulou, M., & Georgoulis, A. D. (2011). Revascularization process of the bone–patellar tendon–bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 39(7), 1478-1486. https://doi.org/10.1177/0363546511398039
- Krasnoperov, S. N., Golovakha, M. L., & Shevelov, A. V. (2018). MRI signs of rearrangement of the anterior cruciate ligament graft in the bone canal. Orthopedics, Traumatology and Prosthetics, 1, 34–40. https://doi.org/10.15674/0030-59872018134-40. [in Russian]
- Ekdahl, M., Wang, J. H., Ronga, M., & Fu, F. H. (2008). Graft healing in anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 16(10), 935-947. https://doi.org/10.1007/s00167-008-0584-0
- Colombet, P., Graveleau, N., & Jambou, S. (2016). Incorporation of hamstring grafts within the tibial tunnel after anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 44(11), 2838-2845. https://doi.org/10.1177/0363546516656181
- Putnis, S., Neri, T., Grasso, S., Linklater, J., Fritsch, B., & Parker, D. (2019). ACL hamstring grafts fixed using adjustable cortical suspension in both the femur and tibia demonstrate healing and integration on MRI at one year. Knee Surgery, Sports Traumatology, Arthroscopy, 28(3), 906-914. https://doi.org/10.1007/s00167-019-05556-6
- Golovakha, M. L., & Maslennikov, S. O. (2020). Experimental study of the effect of implantation of polypropylene mesh in the defect of the capsule of the knee joint. Orthopedics, Traumatology and Prosthetics, 3(620), 11–18. https://doi.org/10.15674 / 0030-59872020311-18. [in Ukrainian]
- Golovakha, M. L., Maslenikov, S. O., & Titarchuk, R. V. (2020). Results of application of polypropylene mesh during anterior cruciate ligament plastics. Orthopedics, Traumatology and Prosthetics, 4, 49–57. https://doi.org/10.15674/0030-598720204. [in Ukrainian]
- Krasnoperov, S. N., Didenko, I. V., & Titarchuk, R. V. (2016). Reconstruction of the anterior cruciate ligament graft according to MRI data. Orthopedics, Traumatology and Prosthetics, 4, 48–54. https://doi.org/10.15674 / 0030-59872016455-61. [in Russian]
- Claes, S., Verdonk, P., Forsyth, R., & Bellemans, J. (2011). The “Ligamentization” process in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 39(11), 2476-2483. https://doi.org/10.1177/0363546511402662
- Figueroa, D., Melean, P., Calvo, R., Vaisman, A., Zilleruelo, N., Figueroa, F., & Villalón, I. (2010). Magnetic resonance imaging evaluation of the integration and maturation of semitendinosus-gracilis Graft in anterior cruciate ligament reconstruction using autologous platelet concentrate. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 26(10), 1318-1325. https://doi.org/10.1016/j.arthro.2010.02.010
- Grasso, S., Linklater, J., Li, Q., & Parker, D. A. (2018). Validation of an MRI protocol for routine quantitative assessment of tunnel position in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 46(7), 1624-1631. https://doi.org/10.1177/0363546518758950
- Stоckle, U., Hoffmann, R., & Schwedtke, J. (1997). Value of MRI in assessment of cruciate ligament replacement. Unfallchirurg, 100, 212–218. DOI: 10. 1302/0301-620X.89B9.19339.
Downloads
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).