MRI analysis of ACL tendon graft Intracanal Incorporation with polypropylene mesh implantation

Authors

  • Maxim Golovakha Zaporizhzhia State Medical University. Ukraine, Ukraine
  • Oleksiy Shevelyov Diagnostic Center «Midicum», Zaporizhzhia. Ukraine, Ukraine
  • Stanislav Bondarenko Zaporizhzhia State Medical University. Ukraine, Ukraine
  • Volodymyr Pertsov Diagnostic Center «Midicum», Zaporizhzhia. Ukraine, Ukraine

DOI:

https://doi.org/10.15674/0030-59872021123-33

Keywords:

Knee joint, anterior cruciate ligament, arthroscopy

Abstract

Hamstring tendon graft remains one of the most popular for ACL reconstruction (ACLR). However, its disadvantage is long term ligamentation process and intracanal incorporation and delayed rehabilitation. One of the methods for stimulation of connective tissue growth is the implantation of polypropylene mesh (PPM), which are widely used in hernioplasty. Objective. To compare the MRI data dynamics of intracanal incorporation of tendon graft with implantation of PPM in bone canals. Methods. For evaluation of graft reconstruction in the femoral and tibial canals we used criteria based on the analysis of MRI images in PD FS and STIR sequences: the nature of the signal from the graft in the center of bone canal; general view of the graft; the nature of the MRI signal from the tissues around the graft on the tendons-bone border; the pre­sence of synovial fluid in the canals and bone edema around them. Results of MRI of 75 patients who underwent «all-inside» ACLR with semitendinosus graft were analyzed. In the study group (40 patients) were compared to control group (35 patients) additionally implanted PPM around the ends of the tendon graft. Results. Intracanal graft incorporation in the group of patients with implantation of PPM occurred faster. The nature of the signal from the center of the bone canal and on the bone-tendon border progressed significantly faster in all observed terms. In the research group there was not presence of synovial fluid in the canals along the graft. Conclusions. Implantation of PPM around the ends of the ACL tendon autograft immersed in bone canals, leads, according to MRI data, to faster intra-canal incorporation. Key words. Knee joint, anterior cruciate ligament, arthroscopy.

Author Biographies

Maxim Golovakha, Zaporizhzhia State Medical University. Ukraine

MD, Prof. in Traumatology and Orthopaedics

Volodymyr Pertsov, Diagnostic Center «Midicum», Zaporizhzhia. Ukraine

MD, Prof.

References

  1. Golovakha, M. L., Krasnoperov, S. N., & Titarchuk, R. V. (2017). Results of the reconstruction of the anterior cruciate ligament using the «all inside» technology. Orthopedics, Traumatology and Prosthetics, 2(607), 84–91. https://doi.org/10.15674/0030-59872017284-91. [in Russian]
  2. Gohil, S., Annear, P. O., & Breidahl, W. (2007). Anterior cruciate ligament reconstruction using autologous double hamstrings: A comparison of standardversusminimal debridement techniques using MRI to assess revascularisation. The Journal of Bone and Joint Surgery. British volume, 89-B(9), 1165-1171. https://doi.org/10.1302/0301-620x.89b9.19339
  3. Magnitskaya, N., Mouton, C., Gokeler, A., Nuehrenboerger, C., Pape, D., & Seil, R. (2019). Younger age and hamstring tendon Graft are associated with higher IKDC 2000 and KOOS scores during the first year after ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 28(3), 823-832. https://doi.org/10.1007/s00167-019-05516-0
  4. Chen, C. (2009). Graft healing in anterior cruciate ligament reconstruction. BMC Sports Science, Medicine and Rehabilitation, 1(1). https://doi.org/10.1186/1758-2555-1-21
  5. Ishibashi, Y., Toh, S., Okamura, Y., Sasaki, T., & Kusumi, T. (2001). Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. The American Journal of Sports Medicine, 29(4), 473-479. https://doi.org/10.1177/03635465010290041601
  6. Li, H., Tao, H., Cho, S., Chen, S., Yao, Z., & Chen, S. (2012). Difference in Graft maturity of the reconstructed anterior cruciate ligament 2 years Postoperatively. The American Journal of Sports Medicine, 40(7), 1519-1526. https://doi.org/10.1177/0363546512443050
  7. Ntoulia, A., Papadopoulou, F., Ristanis, S., Argyropoulou, M., & Georgoulis, A. D. (2011). Revascularization process of the bone–patellar tendon–bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 39(7), 1478-1486. https://doi.org/10.1177/0363546511398039
  8. Krasnoperov, S. N., Golovakha, M. L., & Shevelov, A. V. (2018). MRI signs of rearrangement of the anterior cruciate ligament graft in the bone canal. Orthopedics, Traumatology and Prosthetics, 1, 34–40. https://doi.org/10.15674/0030-59872018134-40. [in Russian]
  9. Ekdahl, M., Wang, J. H., Ronga, M., & Fu, F. H. (2008). Graft healing in anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 16(10), 935-947. https://doi.org/10.1007/s00167-008-0584-0
  10. Colombet, P., Graveleau, N., & Jambou, S. (2016). Incorporation of hamstring grafts within the tibial tunnel after anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 44(11), 2838-2845. https://doi.org/10.1177/0363546516656181
  11. Putnis, S., Neri, T., Grasso, S., Linklater, J., Fritsch, B., & Parker, D. (2019). ACL hamstring grafts fixed using adjustable cortical suspension in both the femur and tibia demonstrate healing and integration on MRI at one year. Knee Surgery, Sports Traumatology, Arthroscopy, 28(3), 906-914. https://doi.org/10.1007/s00167-019-05556-6
  12. Golovakha, M. L., & Maslennikov, S. O. (2020). Experimental study of the effect of implantation of polypropylene mesh in the defect of the capsule of the knee joint. Orthopedics, Traumatology and Prosthetics, 3(620), 11–18. https://doi.org/10.15674 / 0030-59872020311-18. [in Ukrainian]
  13. Golovakha, M. L., Maslenikov, S. O., & Titarchuk, R. V. (2020). Results of application of polypropylene mesh during anterior cruciate ligament plastics. Orthopedics, Traumatology and Prosthetics, 4, 49–57. https://doi.org/10.15674/0030-598720204. [in Ukrainian]
  14. Krasnoperov, S. N., Didenko, I. V., & Titarchuk, R. V. (2016). Reconstruction of the anterior cruciate ligament graft according to MRI data. Orthopedics, Traumatology and Prosthetics, 4, 48–54. https://doi.org/10.15674 / 0030-59872016455-61. [in Russian]
  15. Claes, S., Verdonk, P., Forsyth, R., & Bellemans, J. (2011). The “Ligamentization” process in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 39(11), 2476-2483. https://doi.org/10.1177/0363546511402662
  16. Figueroa, D., Melean, P., Calvo, R., Vaisman, A., Zilleruelo, N., Figueroa, F., & Villalón, I. (2010). Magnetic resonance imaging evaluation of the integration and maturation of semitendinosus-gracilis Graft in anterior cruciate ligament reconstruction using autologous platelet concentrate. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 26(10), 1318-1325. https://doi.org/10.1016/j.arthro.2010.02.010
  17. Grasso, S., Linklater, J., Li, Q., & Parker, D. A. (2018). Validation of an MRI protocol for routine quantitative assessment of tunnel position in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 46(7), 1624-1631. https://doi.org/10.1177/0363546518758950
  18. Stоckle, U., Hoffmann, R., & Schwedtke, J. (1997). Value of MRI in assessment of cruciate ligament replacement. Unfallchirurg, 100, 212–218. DOI: 10. 1302/0301-620X.89B9.19339.

How to Cite

Golovakha, M. ., Shevelyov, O. ., Bondarenko, S. ., & Pertsov, V. . (2021). MRI analysis of ACL tendon graft Intracanal Incorporation with polypropylene mesh implantation. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1), 23–33. https://doi.org/10.15674/0030-59872021123-33

Issue

Section

ORIGINAL ARTICLES