Particularities of hip arthroplasty and restoration of its function in patients with low bone mass (literature review)

Authors

  • Volodymyr Filipenko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-5698-2726
  • Stanislav Bondarenko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0003-2463-5919
  • Ahmed Badnaoui Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-8498-4558
  • Volodymyr Mezentsev Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
  • Valentyna Maltseva Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-9184-0536

DOI:

https://doi.org/10.15674/0030-59872020487-95

Keywords:

Acetabular component of the endoprosthesis, porous metals, acetabulum, osteoporosis, walking, rehabilitation

Abstract

Objective. Basing on the analysis of the scientific literature to study the prevalence of osteoporosis and osteopenia among patients with hip osteoarthritis undergoing THA and to establish the influence of osteoporosis/osteopenia on the choice of implants and on the restoration of the joint function after the surgery. Osteoporosis and osteopenia are manifested in 21–32 % patients undergoing hip arthroplasty. Low bone mass may be a cause of intraoperative (periprosthetic hip fractures) and postoperative complications. In patients with low bone mass bone remodeling with an increased resorption and inhibition of bone formation around hip components can lead to increasing of its micro-movements, the formation of fibrous tissues, and diminution of implants survivorship. In patients with normal bone mineral density (BMD) also the loss of bone tissue around the acetabular cup can occur; it can occur up to 20–60 % in the first three years post operation, which can lead to the cup instability. But the dynamics of changes in bone tissue around the acetabular component in patients with osteoporosis/osteopenia is nowadays poorly understood. We suppose that porous acetabular components have advantages in patients with low BMD. Due to the elastic modulus which is closely similar to cancellous bone, as well as the corresponding porosity, which facilitates osteointegration and gives a reliable secondary biological fixation of the acetabulum. Rehabilitation and restoration of kinematic and support function of the hip joint after arthroplasty is an important issue for patients with low BMD. Gait disturbance can persist 12 months after surgery. One of the reasons is the weakness of the muscles of the femur. Rehabilitation after total hip arthroplasty leads to faster recovery, but particularities of rehabilitation in patients with low bone mass are not fully studied.

Author Biographies

Volodymyr Filipenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Traumatology and Orthopаedics

Stanislav Bondarenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

 Doctor of Traumatology and Orthopaedics

Ahmed Badnaoui, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

 

 

Volodymyr Mezentsev, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

 PhD in Traumatology and Orthopаedics

Valentyna Maltseva, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

 Phd in Biol. Sci.

References

  1. Kloppenburg, M., & Berenbaum, F. (2020). Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthritis and Cartilage, 28(3), 242-248. https://doi.org/10.1016/j.joca.2020.01.002
  2. Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., … & March, L. (2014). The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Annals of the Rheumatic Diseases, 73(7), 1323-1330. https://doi.org/10.1136/annrheumdis-2013-204763
  3. James, S. L., Abate, D., & Abate, K. H. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159), 1789-1858. https://doi.org/10.1016/S0140-6736(18)32279-7
  4. Reginster, J., & Burlet, N. (2006). Osteoporosis: A still increasing prevalence. Bone, 38(2), 4-9. https://doi.org/10.1016/j.bone.2005.11.024
  5. Kanis, J. A. (2008). Diseases WHOC for MB. Assessment of Osteoporosis at the Primary Health Care Level. WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School
  6. Crawford, R. W., & MURRAY, D. W. (1997). Total hip replacement: Indications for surgery and risk factors for failure. Annals of the Rheumatic Diseases, 56(8), 455-457. https://doi.org/10.1136/ard.56.8.455
  7. Learmonth, I. D., Young, C., & Rorabeck, C. (2007). The operation of the century: Total hip replacement. The Lancet, 370(9597), 1508-1519. https://doi.org/10.1016/s0140-6736(07)60457-7
  8. National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (NJR) 14th Annual Report, 2017.
  9. Wolford, M. L., Palso, K., & Bercovitz, A. (2015). Hospitalization for total hip replacement among inpatients aged 45 and over: United States, 2000–2010. NCHS Data Brief., 186, 1–8
  10. Glowacki, J., Hurwitz, S., Thornhill, T. S., Kelly, M., & Leboff, M. S. (2003). Osteoporosis and vitamin-D deficiency among postmenopausal women with osteoarthritis undergoing total hip arthroplasty. The Journal of Bone and Joint Surgery-American Volume, 85(12), 2371-2377. https://doi.org/10.2106/00004623-200312000-00015
  11. Mäkinen, T. J., Alm, J. J., Laine, H., Svedström, E., & Aro, H. T. (2007). The incidence of osteopenia and osteoporosis in women with hip osteoarthritis scheduled for cementless total joint replacement. Bone, 40(4), 1041-1047. https://doi.org/10.1016/j.bone.2006.11.013
  12. Glowacki, J., & Thornhill, T. S. (2016). Osteoporosis and osteopenia in patients with osteoarthritis. Orthopedics and Rheumatology Open Access Journal, 2(3), 555590. https://doi.org/10.19080/OROAJ.2016.02.555590
  13. Maier, G. S., Kolbow, K., Lazovic, D., & Maus, U. (2016). The importance of bone mineral density in hip arthroplasty: Results of a survey asking orthopaedic surgeons about their opinions and attitudes concerning osteoporosis and hip arthroplasty. Advances in Orthopedics, 2016, 1-5. https://doi.org/10.1155/2016/8079354
  14. Aro, H. T., Alm, J. J., Moritz, N., Mäkinen, T. J., & Lankinen, P. (2012). Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women. Acta Orthopaedica, 83(2), 107-114. https://doi.org/10.3109/17453674.2012.678798
  15. Finnilä, S., Moritz, N., SvedströM, E., Alm, J. J., & Aro, H. T. (2015). Increased migration of uncemented acetabular cups in female total hip arthroplasty patients with low systemic bone mineral density. Acta Orthopaedica, 87(1), 48-54. https://doi.org/10.3109/17453674.2015.1115312
  16. Liu, J., Deng, J., Han, X. S., & Xu, L. (2017). Bone mineral density decreased is a high risk factor for uncemented acetabular cups migration in female total hip arthroplasty patients. Zhongguo Gu Shang (China Journal of Orthopaedics and Traumatology), 30(1), 33-37. https://doi.org/10.3969/j.issn.1003-0034.2017.01.008.
  17. Mjöberg, B. (2020). Is early migration enough to explain late clinical loosening of hip prostheses? EFORT Open Reviews, 5(2), 113-117. https://doi.org/10.1302/2058-5241.5.190014
  18. Bottai, V. (2015). Total hip replacement in osteoarthritis: The role of bone metabolism and its complications. Clinical Cases in Mineral and Bone Metabolism. https://doi.org/10.11138/ccmbm/2015.12.3.247
  19. Haidukewych, G. J., Jacofsky, D. J., Hanssen, A. D., & Lewallen, D. G. (2006). Intraoperative fractures of the acetabulum during primary total hip arthroplasty. The Journal of Bone and Joint Surgery-American Volume, 88(9), 1952-1956. https://doi.org/10.2106/00004623-200609000-00007
  20. Mears, S. C. (2013). Management of severe osteoporosis in primary total hip arthroplasty. Current Translational Geriatrics and Experimental Gerontology Reports, 2(2), 99-104. https://doi.org/10.1007/s13670-013-0044-7
  21. Van Praet, F., & Mulier, M. (2019). To cement or not to cement acetabular cups in total hip arthroplasty: A systematic review and re-evaluation. SICOT-J, 5, 35. https://doi.org/10.1051/sicotj/2019032
  22. Brodt, S., Matziolis, G., Buckwitz, B., Zippelius, T., Strube, P., & Roth, A. (2020). Long-term follow-up of bone remodelling after cementless hip arthroplasty using different stems. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-67189-x
  23. Alm, J. J., Mäkinen, T. J., Lankinen, P., Moritz, N., Vahlberg, T., & Aro, H. T. (2009). Female patients with low systemic BMD are prone to bone loss in Gruen zone 7 after cementless total hip arthroplasty. Acta Orthopaedica, 80(5), 531-537. https://doi.org/10.3109/17453670903316801
  24. Karachalios, T., Tsatsaronis, C., Efraimis, G., Papadelis, P., Lyritis, G., & Diakoumopoulos, G. (2004). The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty. The Journal of Arthroplasty, 19(4), 469-475. https://doi.org/10.1016/j.arth.2003.12.081
  25. Sessa, G., Costarella, L., Puma Pagliarello, C., Di Stefano, A., Sessa, A., Testa, G., & Pavone, V. (2018). Bone mineral density as a marker of hip implant longevity: A prospective assessment of a cementless stem with dual-energy X-ray absorptiometry at twenty years. International Orthopaedics, 43(1), 71-75. https://doi.org/10.1007/s00264-018-4187-1
  26. He, Z., Chu, L., Liu, X., Han, X., Zhang, K., Yan, M., Li, X., & Yu, Z. (2020). Differences in subchondral trabecular bone microstructure and finite element analysis-based biomechanical properties between osteoporosis and osteoarthritis. Journal of Orthopaedic Translation, 24, 39-45. https://doi.org/10.1016/j.jot.2020.05.006
  27. Chu, L., Liu, X., He, Z., Han, X., Yan, M., Qu, X., Li, X., & Yu, Z. (2019). Articular cartilage degradation and aberrant Subchondral bone remodeling in patients with osteoarthritis and osteoporosis. Journal of Bone and Mineral Research, 35(3), 505-515. https://doi.org/10.1002/jbmr.3909
  28. Mueller, L. A., Kress, A., Nowak, T., Pfander, D., Pitto, R. P., Forst, R., & Schmidt, R. (2006). Periacetabular bone changes after uncemented total hip arthroplasty evaluated by quantitative computed tomography. Acta Orthopaedica, 77(3), 380-385. https://doi.org/10.1080/17453670610046299
  29. Zingler, K., Haeberle, L., Kress, A., Holzwarth, U., Forst, R., Mueller, L. A., & Schmidt, R. (2011). Comparison of cortical and cancellous bone remodeling of the pelvis after press-fit cup total hip arthroplasty dependent on patient and prosthesis-specific characteristics: A computed tomography-assisted osteodensitometry study in vivo. Biomedizinische Technik/Biomedical Engineering, 56(5), 267-275. https://doi.org/10.1515/bmt.2011.105
  30. Wright, J. M., Pellicci, P. M., Salvati, E. A., Ghelman, B., Roberts, M. M., & Koh, J. L. (2001). Bone density adjacent to press-fit acetabular components. The Journal of Bone and Joint Surgery-American Volume, 83(4), 529-536. https://doi.org/10.2106/00004623-200104000-00007
  31. Mueller, L. A., Schmidt, R., Ehrmann, C., Nowak, T. E., Kress, A., Forst, R., & Pfander, D. (2009). Modes of periacetabular load transfer to cortical and cancellous bone after cemented versus uncemented total hip arthroplasty: A prospective study using computed tomography-assisted osteodensitometry. Journal of Orthopaedic Research, 27(2), 176-182. https://doi.org/10.1002/jor.20742
  32. Kress, A. M., Schmidt, R., Vogel, T., Nowak, T. E., Forst, R., & Mueller, L. A. (2011). Quantitative computed tomography-assisted Osteodensitometry of the pelvis after press-fit cup fixation. The Journal of Bone & Joint Surgery, 93(12), 1152-1157. https://doi.org/10.2106/jbjs.j.01097
  33. Nouri, A., D., P., & We, C. (2010). Biomimetic porous titanium scaffolds for orthopedic and dental applications. Biomimetics Learning from Nature. https://doi.org/10.5772/8787
  34. Meneghini, R. M., Ford, K. S., McCollough, C. H., Hanssen, A. D., & Lewallen, D. G. (2010). Bone remodeling around porous metal Cementless acetabular components. The Journal of Arthroplasty, 25(5), 741-747. https://doi.org/10.1016/j.arth.2009.04.025
  35. Engh, C. A., Hopper, R. H., & Engh, C. (2004). Long-term porous-coated cup survivorship using spikes, screws, and press-Fitting for initial fixation. The Journal of Arthroplasty, 19(7), 54-60. https://doi.org/10.1016/j.arth.2004.06.004
  36. Small, S. R., Berend, M. E., Howard, L. A., Rogge, R. D., Buckley, C. A., & Ritter, M. A. (2013). High initial stability in porous titanium acetabular cups: A biomechanical study. The Journal of Arthroplasty, 28(3), 510-516. https://doi.org/10.1016/j.arth.2012.07.035
  37. Wiznia, D. H., Schwarzkopf, R., Iorio, R., & Long, W. J. (2019). Factors that influence bone-ingrowth fixation of press-fit acetabular cups. JBJS Reviews, 7(6), e2-e2. https://doi.org/10.2106/jbjs.rvw.18.00147
  38. Chen, H., Han, Q., Wang, C., Liu, Y., Chen, B., & Wang, J. (2020). Porous scaffold design for additive manufacturing in orthopedics: A review. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00609
  39. Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., … & Matsuda, S. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering: C, 59, 690-701. https://doi.org/10.1016/j.msec.2015.10.069
  40. Perez, R. A., & Mestres, G. (2016). Role of pore size and morphology in musculo-skeletal tissue regeneration. Materials Science and Engineering: C, 61, 922-939. https://doi.org/10.1016/j.msec.2015.12.087
  41. Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y., & Cai, K. (2018). Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Journal of the Mechanical Behavior of Biomedical Materials, 84, 1-11. https://doi.org/10.1016/j.jmbbm.2018.04.010
  42. Liu, X., Song, X., Zhang, P., Zhu, Z., & Xu, X. (2016). Effects of nano tantalum implants on inducing osteoblast proliferation and differentiation. Experimental and Therapeutic Medicine, 12(6), 3541-3544. https://doi.org/10.3892/etm.2016.3801
  43. Kang, C., Wei, L., Song, B., Chen, L., Liu, J., Deng, B., Pan, X., & Shao, L. (2017). Involvement of autophagy in tantalum nanoparticle-induced osteoblast proliferation. International Journal of Nanomedicine, 12, 4323-4333. https://doi.org/10.2147/ijn.s136281
  44. Al Anouti, F., Taha, Z., Shamim, S., Khalaf, K., Al Kaabi, L., & Alsafar, H. (2019). An insight into the paradigms of osteoporosis: From genetics to biomechanics. Bone Reports, 11, 100216. https://doi.org/10.1016/j.bonr.2019.100216
  45. Wang, S., Zhou, X., Liu, L., Shi, Z., & Hao, Y. (2020). On the design and properties of porous femoral stems with adjustable stiffness gradient. Medical Engineering & Physics, 81, 30-38. https://doi.org/10.1016/j.medengphy.2020.05.003
  46. Osterhoff, G., Morgan, E. F., Shefelbine, S. J., Karim, L., McNamara, L. M., & Augat, P. (2016). Bone mechanical properties and changes with osteoporosis. Injury, 47, S11-S20. https://doi.org/10.1016/s0020-1383(16)47003-8
  47. Gao, X., Fraulob, M., & Haïat, G. (2019). Biomechanical behaviours of the bone–implant interface: A review. Journal of The Royal Society Interface, 16(156), 20190259. https://doi.org/10.1098/rsif.2019.0259
  48. Søballe, K., Hansen, E. S., B.-Rasmussen, H., Jørgensen, P. H., & Bünger, C. (1992). Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. Journal of Orthopaedic Research, 10(2), 285-299. https://doi.org/10.1002/jor.1100100216
  49. Sansone, V. (2013). The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinical cases in mineral and bone metabolism. https://doi.org/10.11138/ccmbm/2013.10.1.034
  50. Li, J., Ayoub, A., Xiu, Y., Yin, X., Sanders, J. O., Mesfin, A., … & Boyce, B. F. (2019). Tgfβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10677-0
  51. Su, K. X., Ji, P., Wang, H., Li, L.-L., Su, L.-Z., & Wang, C. (2018). In vivo study of 3D printed porous tantalum implant on osseointegration. Hua Xi Kou Qiang Yi Xue Za Zhi, 36(3), 291-295. https://doi.org/10.7518/hxkq.2018.03.012
  52. Wang, H., Su, K., Su, L., Liang, P., Ji, P., & Wang, C. (2019). Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Materials Science and Engineering: C, 104, 109908. https://doi.org/10.1016/j.msec.2019.109908
  53. Bandyopadhyay, A., Mitra, I., Shivaram, A., Dasgupta, N., & Bose, S. (2019). Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Additive Manufacturing, 28, 259-266. https://doi.org/10.1016/j.addma.2019.04.025
  54. Bondarenko, S., Dedukh, N., Filipenko, V., Akonjom, M., Badnaoui, A. A., & Schwarzkopf, R. (2018). Comparative analysis of osseointegration in various types of acetabular implant materials. HIP International, 28(6), 622-628. https://doi.org/10.1177/1120700018759314
  55. Bondarenko, S., Ashukina, N., Maltseva, V., Ivanov, G., Badnaoui, A. A., & Schwarzkopf, R. (2020). Evaluation of the bone morphology around four types of porous metal implants placed in distal femur of Ovariectomized rats. Journal of Orthopaedic Surgery and Research, 15, 296. https://doi.org/10.1186/s13018-020-01822-3
  56. Filipenko, V. A., Karpinsky, M. Yu., Karpinskaya, O. D., & Tankut, V. O. (2016). Strength of bone-metal block for different types of surface of implants under conditions of normal bone tissue and osteoporosis in rats. Orthopedics, traumatology and prosthetics, 1, 72-77. http://dx.doi.org/10.15674/0030-59872016172-77. [in Ukrainian]
  57. Vidigal, G. M., Groisman, M., Gregório, L. H., & Soares, G. D. (2009). Osseointegration of titanium alloy and HA-coated implants in healthy and ovariectomized animals: A histomorphometric study. Clinical Oral Implants Research, 20(11), 1272-1277. https://doi.org/10.1111/j.1600-0501.2009.01739.x
  58. Duarte, P. M., Gonçalves, P. F., Zaffalon Casati, M., Sallum, E. A., & Nociti, F. H. (2005). Age-related and surgically induced estrogen deficiencies may differently affect bone around titanium implants in rats. Journal of Periodontology, 76(9), 1496-1501. https://doi.org/10.1902/jop.2005.76.9.1496
  59. Du, Z., Chen, J., Yan, F., & Xiao, Y. (2009). Effects of Simvastatin on bone healing around titanium implants in osteoporotic rats. Clinical Oral Implants Research, 20(2), 145-150. https://doi.org/10.1111/j.1600-0501.2008.01630.x
  60. Yamazaki, M., Shirota, T., Tokugawa, Y., Motohashi, M., Ohno, K., Michi, K., & Yamaguchi, A. (1999). Bone reactions to titanium screw implants in ovariectomized animals. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 87(4), 411-418. https://doi.org/10.1016/s1079-2104(99)70239-8
  61. Mark‐Christensen, T., & Kehlet, H. (2019). Assessment of functional recovery after total hip and knee arthroplasty: An observational study of 95 patients. Musculoskeletal Care, 17(4), 300-312. https://doi.org/10.1002/msc.1409
  62. Bahl, J., Nelson, M., Taylor, M., Solomon, L., Arnold, J., & Thewlis, D. (2018). Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: A systematic review and meta-analysis. Osteoarthritis and Cartilage, 26(7), 847-863. https://doi.org/10.1016/j.joca.2018.02.897
  63. Kolk, S., Minten, M. J., Van Bon, G. E., Rijnen, W. H., Geurts, A. C., Verdonschot, N., & Weerdesteyn, V. (2014). Gait and gait-related activities of daily living after total hip arthroplasty: A systematic review. Clinical Biomechanics, 29(6), 705-718. https://doi.org/10.1016/j.clinbiomech.2014.05.008
  64. Wada, O., Asai, T., Hiyama, Y., Nitta, S., & Mizuno, K. (2019). Gait variability in women with hip osteoarthritis before and after total hip replacement. American Journal of Physical Medicine & Rehabilitation, 98(10), 866-871. https://doi.org/10.1097/phm.0000000000001206
  65. Arnold, J. B., Walters, J. L., & Ferrar, K. E. (2016). Does physical activity increase after total hip or knee arthroplasty for osteoarthritis? A systematic review. Journal of Orthopaedic & Sports Physical Therapy, 46(6), 431-442. https://doi.org/10.2519/jospt.2016.6449
  66. Queen, R. M., Campbell, J. C., & Schmitt, D. (2019). Gait analysis reveals that total hip arthroplasty increases power production in the hip during level walking and stair climbing. Clinical Orthopaedics and Related Research, 477(8), 1839-1847. https://doi.org/10.1097/corr.0000000000000809
  67. Foucher, K. C., Hurwitz, D. E., & Wimmer, M. A. (2007). Preoperative gait adaptations persist one year after surgery in clinically well-functioning total hip replacement patients. Journal of Biomechanics, 40(15), 3432-3437. https://doi.org/10.1016/j.jbiomech.2007.05.020
  68. Nankaku, M., Tsuboyama, T., Kakinoki, R., Keiichi, K., Kanzaki, H., Mito, Y., & Nakamura, T. (2007). Gait analysis of patients in early stages after total hip arthroplasty: Effect of lateral trunk displacement on walking efficiency. Journal of Orthopaedic Science, 12(6), 550-554. https://doi.org/10.1007/s00776-007-1178-2
  69. Renkawitz, T., Weber, T., Dullien, S., Woerner, M., Dendorfer, S., Grifka, J., & Weber, M. (2016). Leg length and offset differences above 5 Mm after total hip arthroplasty are associated with altered gait kinematics. Gait & Posture, 49, 196-201. https://doi.org/10.1016/j.gaitpost.2016.07.011
  70. Yoo, J., Cha, Y., Kim, K., Kim, H., Choy, W., & Hwang, S. (2019). Gait analysis after total hip arthroplasty using direct anterior approach versus anterolateral approach: A systematic review and meta-analysis. BMC Musculoskeletal Disorders, 20(1). https://doi.org/10.1186/s12891-019-2450-2
  71. Martz, P., Bourredjem, A., Maillefert, J. F., Binquet, C., Baulot, E., Ornetti, P., & Laroche, D. (2019). Influence of body mass index on sagittal hip range of motion and gait speed recovery six months after total hip arthroplasty. International Orthopaedics, 43(11), 2447-2455. https://doi.org/10.1007/s00264-018-4250-y
  72. Nankaku, M., Tsuboyama, T., Aoyama, T., Kuroda, Y., Ikeguchi, R., & Matsuda, S. (2016). Preoperative gluteus medius muscle atrophy as a predictor of walking ability after total hip arthroplasty. Physical Therapy Research, 19(1), 8-12. https://doi.org/10.1298/ptr.e9884
  73. Pfirrmann, C. W., Notzli, H. P., Dora, C., Hodler, J., & Zanetti, M. (2005). Abductor tendons and muscles assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic patients. Radiology, 235(3), 969-976. https://doi.org/10.1148/radiol.2353040403
  74. Tsukagoshi, R., Tateuchi, H., Fukumoto, Y., Akiyama, H., So, K., Kuroda, Y., Okumura, H., & Ichihashi, N. (2015). Factors associated with restricted hip extension during gait in women after total hip arthroplasty. HIP International, 25(6), 543-548. https://doi.org/10.5301/hipint.5000286
  75. Winther, S. B., Foss, O. A., Klaksvik, J., & Husby, V. S. (2020). Increased muscle strength limits postural sway during daily living activities in total hip arthroplasty patients. American Journal of Physical Medicine & Rehabilitation, Publish Ahead of Print. https://doi.org/10.1097/phm.0000000000001382
  76. Husby, V. S., Helgerud, J., Bjørgen, S., Husby, O. S., Benum, P., & Hoff, J. (2009). Early maximal strength training is an efficient treatment for patients operated with total hip arthroplasty. Archives of Physical Medicine and Rehabilitation, 90(10), 1658-1667. https://doi.org/10.1016/j.apmr.2009.04.018
  77. Matheis, C., & Stöggl, T. (2018). Strength and mobilization training within the first week following total hip arthroplasty. Journal of Bodywork and Movement Therapies, 22(2), 519-527. https://doi.org/10.1016/j.jbmt.2017.06.012
  78. Mikkelsen, L. R., Petersen, A. K., Mechlenburg, I., Mikkelsen, S., Søballe, K., & Bandholm, T. (2016). Description of load progression and pain response during progressive resistance training early after total hip arthroplasty: Secondary analyses from a randomized controlled trial. Clinical Rehabilitation, 31(1), 11-22. https://doi.org/10.1177/0269215516628305
  79. Gremeaux, V., Renault, J., Pardon, L., Deley, G., Lepers, R., & Casillas, J. (2008). Low-frequency electric muscle stimulation combined with physical therapy after total hip arthroplasty for hip osteoarthritis in elderly patients: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 89(12), 2265-2273. https://doi.org/10.1016/j.apmr.2008.05.024
  80. Greco, E. A., Pietschmann, P., & Migliaccio, S. (2019). Osteoporosis and Sarcopenia increase frailty syndrome in the elderly. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00255
  81. Reiss, J., Iglseder, B., Alzner, R., Mayr-Pirker, B., Pirich, C., Kässmann, H., …& Reiter, R. (2019). Sarcopenia and osteoporosis are interrelated in geriatric inpatients. Zeitschrift für Gerontologie und Geriatrie, 52(7), 688-693. https://doi.org/10.1007/s00391-019-01553-z
  82. Tarantino, U., Baldi, J., Scimeca, M., Piccirilli, E., Piccioli, A., Bonanno, E., & Gasbarra, E. (2016). The role of sarcopenia with and without fracture. Injury, 47, S3-S10. https://doi.org/10.1016/j.injury.2016.07.057
  83. Drey, M., Sieber, C. C., Bertsch, T., Bauer, J. M., & Schmidmaier, R. (2015). Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clinical and Experimental Research, 28(5), 895-899. https://doi.org/10.1007/s40520-015-0494-1
  84. Tournadre, A., Vial, G., Capel, F., Soubrier, M., & Boirie, Y. (2019). Sarcopenia. Joint Bone Spine, 86(3), 309-314. https://doi.org/10.1016/j.jbspin.2018.08.001
  85. Rezuş, E., Burlui, A., Cardoneanu, A., Rezuş, C., Codreanu, C., Pârvu, M., Rusu Zota, G., & Tamba, B. I. (2020). Inactivity and skeletal muscle metabolism: A vicious cycle in old age. International Journal of Molecular Sciences, 21(2), 592. https://doi.org/10.3390/ijms21020592
  86. Ferrucci, L., Baroni, M., Ranchelli, A., Lauretani, F., Maggio, M., Mecocci, P., & Ruggiero, C. (2014). Interaction between bone and muscle in older persons with mobility limitations. Current Pharmaceutical Design, 20(19), 3178-3197. https://doi.org/10.2174/13816128113196660690
  87. Reginster, J., Beaudart, C., Buckinx, F., & Bruyère, O. (2016). Osteoporosis and sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care, 19(1), 31-36. https://doi.org/10.1097/mco.0000000000000230
  88. Povoroznyuk, V. V., Binkley, N., Dzerovich, N. I., & Povoroznyuk, R. V. (2016). Sarcopenia. Kyiv: PJSC "Vipol". [in Ukrainian]
  89. Li, Z., Müller, R., & Ruffoni, D. (2017). Bone remodeling and mechanobiology around implants: Insights from small animal imaging. Journal of Orthopaedic Research. https://doi.org/10.1002/jor.23758

How to Cite

Filipenko, V., Bondarenko, S., Badnaoui, A., Mezentsev, V., & Maltseva, V. (2023). Particularities of hip arthroplasty and restoration of its function in patients with low bone mass (literature review). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (4), 87–95. https://doi.org/10.15674/0030-59872020487-95

Issue

Section

DIGESTS AND REVIEWS