Structural and metabolic features of the femur of rats after the implantation of glass crystalline material
DOI:
https://doi.org/10.15674/0030-59872019364-72Keywords:
bone repair, plastic defects, bioglass, rat femur, osseointegrationAbstract
In vivo research is an important link in the development of osteoplastic materials.
Aim: to study the structural features and markers of bone metabolism after an implantation into the distal metaphysis of the rat femur of glass crystalline calcium phosphate material (GCM).
Methods: hole defects in the distal metaphysis of the femur were performed in 28 white laboratory male rats (age 4 months, weight 200–260 g). GCM cylindrical samples with a diameter of 1 mm and a height of 3 mm were placed in defects. A comparison group for biochemical studies was 5 intact rats. Animals were sacrificed 7, 14, 28, and 90 days after surgery. The histological studies of the bone structure around the implant and assessment of osseointegration were performed. In the blood serum the activity of alkaline phosphatase, the content of chondroitin sulfates, urea, the activity of alanine aminotransferase were determined.
Results: 7 days after surgery the relative content of bone tissue around implants was (28.59 ± 1.33) %, after 14 days it increased by 2.71 times (p < 0.001). After 30 days bone tissue was located around the entire perimeter of the implant. Bioresorption of the material continued throughout the observation period. A significant increase in the activity of the alkaline phosphatase in blood serum compared with the rate of intact rats was shown from the 7th to the 30th day of observation. The maximum increase of chondroitin sulfates was recorded on the 7th day. The content of urea in the blood serum and the activity of alanine aminotransferase did not statistically significantly differ in terms of the experiment or from indices of intact animals.
Conclusions: the studied material is biocompatible, has osteoinductive and osteoconductive qualities. After implanting it into the bone, bone repair is not impaired, and lamellar bone tissue is formed for the final study period (90 days). A characteristic feature of the material is its gradual resorption until the 90th day of observation.
References
- Savvova, O. V., Babich, O. V., Fesenko, O. I., & Voronov, G. K. (2018). Biologically active glass crystalline materials for medical purposes. Kharkiv: Planet-Print LLC. (in Ukrainian)
- Amini A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: recent advances and challenges. Critical Reviews in Biomedical Engineering, 40 (5), 363–408. doi:10.1615/critrevbiomedeng.v40.i5.10.
- Catauro, M., & Bollino, F. (2017). Advanced Glass-Ceramic Materials for Biomedical Applications. Journal of Bone Reports & Recommendations, 03 (01), 2. doi:10.4172/2469-6684.100035
- Karadjian, M., Essers, C., Tsitlakidis, S., Reible, B., Moghaddam, A., Boccaccini, A., & Westhauser, F. (2019). Biological properties of calcium phosphate bioactive glass composite bone substitutes: current experimental evidence. International Journal of Molecular Sciences, 20 (2), 305. doi:10.3390/ijms20020305
- Bellucci, D., Sola, A., & Cannillo, V. (2015). Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. Journal of Biomedical Materials Research Part A, 104 (4), 1030–1056. doi:10.1002/jbm.a.35619
- Shpak, A. P., Karbovsky, V. L., Trachevsky, V. V. (2002). Apatity. Kiev: Akademperiodika. (in Russian)
- Ojansivu, M., Vanhatupa, S., Björkvik, L., Häkkänen, H., Kellomäki, M., Autio, R., & Miettinen, S. (2015). Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomaterialia, 21, 190–203. doi:10.1016/j.actbio.2015.04.017
- Balasubramanian, P., Hupa, L., Jokic, B., Detsch, R., Grünewald, A., & Boccaccini, A. R. (2016). Angiogenic potential of boron-containing bioactive glasses: in vitro study. Journal of Materials Science, 52 (15), 8785–8792. doi:10.1007/s10853-016-0563-7
- Bioactive Glasses: From parent 45S5 composition to scaffold-assisted tissue-healing therapies. (2018). Journal of Functional Biomaterials, 9 (1), 24. doi:10.3390/jfb9010024
- Savvova, O., Babitch, O., Fesenko, O., Bragina, L., & Voronov, H. (2018). Biocompatible glass-ceramic coatings. Calcium-phosphate-silicate coatings on titanium for dental implants. Riga: SIA OmniScriptum Publishing.
- European Convention for the Protection of Vertebrate Animals Used for Research and Other Scientific Purposes. Strasbourg, March 18, 1986
- On the Protection of Animals from Cruelty: Law of Ukraine No. 3447-IV of 21.02.2006 Retrieved from: http://zakon.rada.gov.ua/cgi-bin/laws/main.cgi?nreg=3447-15
- Sarkisov, D. S., & Perov, Yu. L. (1996). Microscopic technology: a guide. Moscow: Medicine. (in Russian)
- Tymoshenko, O. P., Voronina, L. M., & Kravchenko, V. M. (2003). Clinical biochemistry: a textbook. Kharkiv: Golden Pages. (in Ukranian)
- Morozenko, D. V., & Leontуeva, F. S. (2016). Methods of research of connective tissue metabolism markers in modern clinical and experimental medicine. Young scientist, 2, 168–172. (in Ukranian)
- Hench, L. L. (1991). Bioceramics: from concept to clinic. Journal of the American Ceramic Society, 74 (7), 1487–1510. doi:10.1111/j.1151-2916.1991.tb07132.x
- Hench, L. L. (2009). Genetic design of bioactive glass. Journal of the European Ceramic Society, 29 (7), 1257–1265. doi:10.1016/j.jeurceramsoc.2008.08.002
- Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9 (1), 4457–4486. doi:10.1016/j.actbio.2012.08.023
- Filipowska, J., Pawlik, J., Cholewa-Kowalska, K., Tylko, G., Pamula, E., Niedzwiedzki, L., & Osyczka, A. M. (2014). Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Biomedical Materials, 9 (6), 065001. doi:10.1088/1748-6041/9/6/065001
- Gao, C., Peng, S., Feng, P., & Shuai, C. (2017). Bone biomaterials and interactions with stem cells. Bone Research, 5 (1). doi:10.1038/boneres.2017.59
- Hoppe, A., Güldal, N. S., & Boccaccini, A. R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 32 (11), 2757–2774. doi:10.1016/j.biomaterials.2011.01.004
- Albrektsson, T., & Johansson, C., (2001). Osteoinduction, osteoconduction and osseointegration. European Spine Journal, 10 (0), S96–S101. doi:10.1007/s005860100282
- Javed, F., Ahmed, H. B., Crespi, R., & Romanos, G. E. (2013). Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interventional Medicine and Applied Science, 5 (4), 162–167. doi:10.1556/imas.5.2013.4.3
- Abidi, S. S., & Murtaza, Q. (2014). Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. Journal of Materials Science & Technology, 30 (4), 307–310. doi:10.1016/j.jmst.2013.10.011
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2019 Vasyl Shimon, Nataliya Ashukina, Frieda Leontyeva, Sergii Alfeldi, Andrii Sheregii, Oksana Savvova, Olga Nikolchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).