DOI: https://doi.org/10.15674/0030-59872019316-21

Bone mineral density and the level of active metabolites of vitamin d in postmenopausal women with spinal osteochondrosis

Sergey Kosterin, Valentyna Maltseva, Nataliya Ashukina

Abstract


In the elderly and senile age, osteoporosis and spinal osteochondrosis are found with high frequency, which determines the study of their common development mechanisms.

Objective: to study the level of 25(OH)D and 1.25(OH)2D3 and indicators of bone metabolism in the blood serum of postmenopausal women with spinal osteochondrosis and low bone mineral density (BMD).

Methods: a retrospective analysis was performed using bone densitometer (Explorer QDR W, Hologic) data; BMD of the lumbar spine and proximal femur was assessed in 123 postmenopausal women with clinically and radiologically confirmed spinal osteochondrosis. The active serum metabolites of vitamin D (1.25(OH)2D3, 25(OH)D) were studied in the blood serum of patients by enzyme-linked immunosorbent assay; total and ionized calcium, phosphorus, magnesium, acid and alkaline phosphatase activity were determined.

Results: in postmenopausal women with spinal osteochondrosis and decreased BMD, the average values of 25(OH)D were recorded at the level of insufficiency, and 1.25(OH)2D3 was at deficiency level. Among them osteoporosis was diagnosed in 67.5 %. A reduced level of magnesium was detected in 52.8 % (65) of the women examined, a reduced level of ionized calcium was detected in 60.9 % (75). Moreover, in patients with a deficiency of 25(OH)D, the serum magnesium level was on average lower than normal and by 1.2 times (p < 0.05) lower compared to the group with 25(OH) D deficiency. The level of total calcium was lower than the reference values in 26.8 % (33) patients, phosphorus was lower in 4.1 % (5).

Conclusions: low BMD is associated with deficiency and insufficiency of 25(OH)D and 1.25(OH)2D3 in 100 % of postmenopausal women with spinal osteochondrosis. A decrease of the level of 25(OH)D is accompanied by a low level of serum magnesium, which should be considered when prescribing compensatory therapy of vitamin D. 


Keywords


osteochondrosis; vitamin D deficiency; postmenopausal osteoporosis; spine; bone densitometry

References


Pelletier, J.-P. (2013). Osteoporosis and osteoarthritis: similarities and differences in experimental models. Osteoporosis International, 24 (1), S71.

Armbrecht, G., Felsenberg, D., Ganswindt, M., Lunt, M., Kaptoge, S. K., & Abendroth, K. (2017). Degenerative inter-vertebral disc disease osteochondrosis intervertebralis in Europe: prevalence, geographic variation and radiological correlates in men and women aged 50 and over. Rheumatology, 56 (7), 1189–1199. doi:10.1093/rheumatology/kex040

Tomé-Bermejo, F. A., Pinera, R., & Alvarez-Galovich, L. (2017). Osteoporosis and the management of spinal degenerative disease. Archives of Bone and Joint Surgery, 5 (5), 272–282.

Chin, D. K., Park, J. Y., Yoon, Y. S., Kuh, S. U., Jin, B. H., Kim, K. S., & Cho, Y. E. (2007). Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporosis International, 18 (9), 1219–1224. doi:10.1007/s00198-007-0370-8

Bergh, C., Söderpalm, A., & Brisby, H. (2018). Preoperative dual-energy X-ray absorptiometry and FRAX in patients with lumbar spinal stenosis. Journal of Orthopaedic Surgery and Research, 13 (1). doi:10.1186/s13018-018-0964-1

Andersen, T., Christensen, F. B., Langdahl, B. L., Ernst, C., Fruensgaard, S., Østergaard, J., & Bünger, C. (2010). Fusion mass bone quality after uninstrumented spinal fusion in older patients. European Spine Journal, 19 (12), 2200–2208. doi:10.1007/s00586-010-1373-2

Moon, S., Lee, H., Lee, B., Kim, H. J., & Kim, T. (2012). Osteoporotic profiles in elderly patients with symptomatic lumbar spinal canal stenosis. Indian Journal of Orthopaedics, 46 (3), 279. doi:10.4103/0019-5413.96379

Wáng, Y. X. (2018). Senile osteoporosis is associated with disc degeneration. Quantitative Imaging in Medicine and Surgery, 8 (6), 551–556. doi:10.21037/qims.2018.07.04

Baron, Y. M., Brincat, M. P., Calleja-Agius, J., & Calleja, N. (2009). Intervertebral disc height correlates with vertebral body T-scores in premenopausal and postmenopausal women. Menopause International, 15 (2), 58–62. doi:10.1258/mi.2009.009013

Xiao, Z., He, J., Su, G., Chen, M., Hou, Y., Chen, S., & Lin, D. (2018). Osteoporosis of the vertebra and osteochondral remodeling of the endplate causes intervertebral disc degeneration in ovariectomized mice. Arthritis Research & Therapy, 20 (1), 207. doi:10.1186/s13075-018-1701-1

Salo, S., Leinonen, V., Rikkonen, T., Vainio, P., Marttila, J., Honkanen, R., & Sirola, J. (2014). Association between bone mineral density and lumbar disc degeneration. Maturitas, 79 (4), 449–455. doi:10.1016/j.maturitas.2014.09.003

Castaño-Betancourt, M., Oei, L., Rivadeneira, F., De Schepper, E., Hofman, A., Bierma-Zeinstra, S., & Van Meurs, J. (2013). Association of lumbar disc degeneration with osteoporotic fractures; the Rotterdam study and meta-analysis from systematic review. Bone, 57 (1), 284–289. doi:10.1016/j.bone.2013.08.004

Nakamichi, Y., Udagawa, N., Suda, T., & Takahashi, N. (2018). Mechanisms involved in bone resorption regulated by vitamin D. The Journal of Steroid Biochemistry and Molecular Biology, 177, 70–76. doi:10.1016/j.jsbmb.2017.11.005

Wang, Y., Zhu, J., & DeLuca, H. F. (2014). Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone. Journal of Bone and Mineral Research, 29 (3), 685–692. doi:10.1002/jbmr.2081

Gruber, H. E., Hoelscher, G., Ingram, J. A., Chow, Y., Loeffler, B., & Hanley, E. N. (2008). 1,25(OH)2-Vitamin D3 inhibits proliferation and decreases production of monocyte chemoattractant protein-1, thrombopoietin, VEGF, and angiogenin by human annulus cells in vitro. Spine, 33 (7), 755–765. doi:10.1097/brs.0b013e3181695d59

Colombini, A., Lanteri, P., Lombardi, G., Grasso, D., Recordati, C., Lovi, A., & Brayda-Bruno, M. (2012). Metabolic effects of vitamin D active metabolites in monolayer and micromass cultures of nucleus pulposus and annulus fibrosus cells isolated from human intervertebral disc. The International Journal of Biochemistry & Cell Biology, 44 (6), 1019–1030. doi:10.1016/j.biocel.2012.03.012

Withanage, N. D., Perera, S., Peiris, H., & Athiththan, L. V. (2018). Serum 25-hydroxyvitamin D, serum calcium and vitamin D receptor (VDR) polymorphisms in a selected population with lumbar disc herniation — A case control study. PLOS ONE, 13 (10), e0205841. doi:10.1371/journal.pone.0205841

Zolfaghari, F., Faridmoayer, A., Soleymani, B., Taji, M., & Mahabadi, M. (2016). A survey of vitamin D status in patients with degenerative diseases of the spine. Asian Spine Journal, 10 (5), 834. doi:10.4184/asj.2016.10.5.834

Tong, T., Liu, Z., Zhang, H., Sun, J., Zhang, D., Wang, F., & Shen, Y. (2019). Age-dependent expression of the vitamin D receptor and the protective effect of vitamin D receptor activation on H2O2-induced apoptosis in rat intervertebral disc cells. The Journal of Steroid Biochemistry and Molecular Biology, 190, 126–138. doi:10.1016/j.jsbmb.2019.03.013

WHO scientific group on the assessment of osteoporosis at primary health care level [web source]. Available from: https://www.who.int/chp/topics/Osteoporosis.pdf

Kamyshnikov, V. S. (2003). Clinical and biochemical laboratory diagnostics. Reference book in 2 volumes T. 1. Minsk: Interservice. (in Russian)

Hong, A. R., Kim, J. H., Lee, J. H., Kim, S. W., & Shin, C. S. (2019). Metabolic characteristics of subjects with spine–femur bone mineral density discordances: the Korean National Health and Nutrition Examination Survey (KNHANES 2008–2011). Journal of Bone and Mineral Metabolism, 37 (5), 835–843. doi:10.1007/s00774-018-0980-6

Orchard, T. S., Larson, J. C., Alghothani, N., Bout-Tabaku, S., Cauley, J. A., Chen, Z., & Jackson, R. D. (2014). Magnesium intake, bone mineral density, and fractures: results from the Women’s Health Initiative Observational Study. The American Journal of Clinical Nutrition, 99 (4), 926–933. doi:10.3945/ajcn.113.067488

Rosanoff, A., Dai, Q., & Shapses, S. A. (2016). Essential nutrient interactions: does low or suboptimal magnesium status interact with vitamin D and/or calcium status? Advances in Nutrition, 7 (1), 25–43. doi:10.3945/an.115.008631

Uwitonze, A. M., & Razzaque, M. S. (2018). Role of magnesium in vitamin D activation and function. The Journal of the American Osteopathic Association, 118 (3), 181. doi:10.7556/jaoa.2018.037

Reddy, P., & Edwards, L. R. (2019). Magnesium supplementation in vitamin D deficiency. American Journal of Therapeutics, 26 (1), e124–e132. doi:10.1097/mjt.0000000000000538

Pludowski, P., Holick, M. F., Grant, W. B., Konstantynowicz, J., Mascarenhas, M. R., Haq, A., & Wimalawansa, S. J. (2018). Vitamin D supplementation guidelines. The Journal of Steroid Biochemistry and Molecular Biology, 175, 125–135. doi:10.1016/j.jsbmb.2017.01.021

Povorozniuk, V. V., Plodowski, P. (Eds.) (2014). Vitamin D Deficiency and Deficiency: Epidemiology, Diagnosis, Prevention and Treatment. Donetsk: Publisher Zaslavsky O. Yu. (in Ukrainian)

Mederle, O. A., Balas, M., Ioanoviciu, S. D., Gurban, C., Tudor, A., & Borza, C. (2018). Correlations between bone turnover markers, serum magnesium and bone mass density in postmenopausal osteoporosis. Clinical Interventions in Aging, 13, 1383–1389. doi:10.2147/cia.s170111

Rahnama, M., Swiatkowski, W., & Zareba, S. (2002). Assessment of the alkaline (ALP) and acid phosphatase (ACP) in the blood serum of rats during experimental postmenopausal osteoporosis. Rocz Panstw Zakl Hig, 53 (3), 283–291.




Copyright (c) 2019 Sergey Kosterin, Valentyna Maltseva, Nataliya Ashukina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.