The structural organization of the adjacent vertebral segments in cases of the introduction of implants, made of different biomaterials, into the interbody gap of the lumbar spine (an experimental study)

Authors

  • Volodymyr Fedak
  • Ninel Dedukh
  • Svitlana Malyshkina

DOI:

https://doi.org/10.15674/0030-59872009269-75

Keywords:

spine, spondylodesis, adjacent vertebras, morphogenesis, implants, biomaterials

Abstract

The study was conducted on 6 rabbits of the chinchilla breed that underwent an introduction of implants, made of porous corundum ceramics and titanium, into the interbody gap at the level of LIII-LIV. It was revealed that the implantation of endoprostheses, made of biomaterials, into the interbody gap caused the development of dystrophic and destructive changes in all the components of the adjacent segments three months later. The expressiveness of the disturbances depended upon the material of the endoprosthesis, the level of the adjacent segment localization and the structural component of the segment. In cases when the titanium specimen was used, destructive changes prevailed in all the components of the adjacent segments, but manifested themselves in the caudal adjacent segments, to a larger extent in the internal parts of the fibrous ring and the pulpy nucleus of intervertebral disks. A tendency to a lower height of the caudally located intervertebral disk was observed.

References

  1. Автандилов Г.Г. Медицинская морфометрия / Г.Г. Автандилов. — М.: Медицина, 1990. — C. 381.
  2. Корж Н.А. Спондилодез в современной хирургии позвоночника / Н.А. Корж, А.Е. Барыш // Травма. — 2005. — Том 6, № 4. — С. 390–398.
  3. Продан А.И. Классификация дегенеративных заболеваний позвоночника / А.И. Продан, А.Е. Бариш // Doctor. — 2005. — №4 (30). — С. 4–9.
  4. Радченко В.А. Практикум по стабилизации грудного и поясничного отделов позвоночника / В.А. Радченко, Н.А. Корж. — Харьков: Прапор, 2004. — 154 с.
  5. Boden S.D. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics / S.D. Boden, J.H. Schi-mandle, W.C. Hutton // Spine. — 1995. — Vol. 20. — P. 412–420.
  6. Butler W.F. Comparative anatomy and development of the mammalian disc / W.F. Butler. — Ghosh P. (eds) The biology of the intervertebral disc. — CRC, Boca Raton, FL, 1988. — P. 83–108.
  7. The response of the canine intervertebral disc to immobilization produced by spinal arthrodesis is dependent on рconstitutional factors / T.C. Cole, P. Ghosh, J. Hannan [et al.] // J. Orthop. Res. — 1987. — Vol. 5. — P. 337–347.
  8. Cottrell J.M. Assessing the Stiffness of Spinal Fusion in Animal Models // HSS J. — 2006. — Vol. 2(1). — P. 12–18.
  9. European convention for the protection of vertebrate animals used for experimental and other scientific purpose: Council of Europe 18.03.1986. — Strasbourg, 1986. — 52 p.
  10. Elliott D.M. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc / D.M. Elliott, J.J. Sarver // Spine. — 2004. — Vol. 29. — P. 713–722.
  11. Lotz J.C. Animal models of intervertebral disc degeneration: lessons learned / J.C. Lotz // Spine. — 2004. — Vol. 29. — P. 2742–2750.
  12. Min J.H. The clinical characteristics and risk factors for the adjacent segment degeneration in instrumented lumbar fusion / J.H. Min, J.S. Jang, B. Jung // J. Spinal. Disord. Tech. — 2008. — Vol. 21, № 5. — P. 305–309.
  13. Magnetic resonance imaging and biological changes in injured intervertebral disc under normal and increased mechanical demands / J.M. Olsewski, M.J. Schendel, L.J. Wallace [et al.] // Spine. — 1996. — Vol. 21, № 14. — P. 1945–1951.
  14. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature / P. Park, H.J. Garton, V.C. Gala [et al.] // Spine. — 2004. — Vol. 29, № 17. — Р. 1938–1944.
  15. Phillips F.M. Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model / F.M. Phillips, J. Resident; F. T. Wetzel // J. Bone J. Surg. — 2002. — Vol 84-B. — P. 289–294.
  16. Qiu G.X. Adjacent segment disease after spine fusion and instrumentation/ G.X. Qiu, H.G. Xu, X.S. Weng // Zhongguo Yi Xue Ke Xue Yuan Xue Bao. — 2005. — Vol. 27, №2. — P. 249–253.
  17. Sarver J.J. Mechanical differences between lumbar and tail discs in the mouse / J.J. Sarver, D.M. Elliott // J. Orthop. Res. — 2005. — Vol. 23. — P. 150–155.
  18. Effects of unisegmental disc compression on adjacent segment: an in vivo animal models / F. Uglaub, T. Guehring, H. Lorenz [et. al] // European Spine Journal. — 2005. — Vol. 14, № 10. — Р. 949–955.
  19. ISSLS prize winner: a novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements / H.J. Wilke, A. Rohlmann, S. Neller [et al.] // Spine. — 2003. — Vol. 28. P. 2585–2593.

How to Cite

Fedak, V., Dedukh, N., & Malyshkina, S. (2009). The structural organization of the adjacent vertebral segments in cases of the introduction of implants, made of different biomaterials, into the interbody gap of the lumbar spine (an experimental study). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 69–75. https://doi.org/10.15674/0030-59872009269-75

Issue

Section

ORIGINAL ARTICLES