Experimental study of stiffness fixation of a three-part fracture of the proximal humerus

Authors

  • Vasyl Makarov SD «Specialized Multidisciplinary Hospital № 1 of the Ministry of Health of Ukraine», Dnipro, Ukraine https://orcid.org/0000-0003-0936-7039
  • Volodymyr Lipovskiy Dnipro National University O. Gonchar. Ukraine, Ukraine
  • Yevgen Levadniy Lodz University of Technology. Poland, Poland
  • Igor Boyko SE «Scientific Practical Center for Prophylactic and Clinical Medicine» State Administration, Kiev. Ukraine, Ukraine
  • Gleb Lazarenko SE «Scientific Practical Center for Prophylactic and Clinical Medicine» State Administration, Kiev. Ukraine, Ukraine

DOI:

https://doi.org/10.15674/0030-598720184115-121

Keywords:

fracture of the proximal humerus, osteosynthesis, rigidity of fixation, structural polylactic acid grafts, osteoporosis structural, polylactic acid transplants, osteoporosis

Abstract

The choice of the fixation method of proximal humerus fractures remains a controversial topic. Three- and four-part fractures are the most severe injuries in the spectrum of the proximal humerus fractures (types B and C for AO/OTA) are found in clinical practice in 20 % of patients, especially in patients over 60 years old with osteoporosis. Objective: a comparative study of stiffness fixation of three-part proximal humerus fractures on artificial
osteoporotic models using various metal implants, including structural polylactic acid allograft. Methods: the biomechanical experimental study has been included 4 types of fragment fixation of artificial models. Type I — intramedullary blocked 7 mm titanium reconstructive cannulated nail, type II — four 5.0 mm cannulated screws with spongy thread; type ІІІ — PHILOS plate with reinforcement of the head fragment with 2 structural polylactic acid transplants (PLA); type IV — PHILOS plate without reinforcement allograft. Tests performed for three types of loading, depending on the angle of inclination of the bone in the frontal plane — 0°, 10°, and 20°. Results: The least load-bearing system «bone – implant» was found in type І, and the most — in type II, the difference between rigidity was 4 times. Structural rigidity in type IV was less than 2 times compared to type I and less by 10 % in comparison with type III. The value of the rigidity of the considered types of fixation with the increase of the angle of inclination of the axis of the bone in the frontal plane decreases. The highest carrying capacity, as well as the amount of deformation energy, was found for type III, and the smallest — for type I. Conclusions: according to biomechanical  tudy the best method fixation of the three-part fracture of the proximal humerus is the type III — PHILOS plate with reinforcement with 2 structural polylactic acid grafts (PLA).

Author Biographies

Vasyl Makarov, SD «Specialized Multidisciplinary Hospital № 1 of the Ministry of Health of Ukraine», Dnipro

PhD in Traumatology and Orthopaedics

Yevgen Levadniy, Lodz University of Technology. Poland

 

 

Igor Boyko, SE «Scientific Practical Center for Prophylactic and Clinical Medicine» State Administration, Kiev. Ukraine

MD, Prof. in Traumatology and Orthopaedics

References

  1. Baron, J. A., Karagas, M., Barrett, J., Kniffin, W., Malenka, D., Mayor, M., & Keller, R. B. (1996). Basic epidemiology of fractures of the upper and lower limb among americans over 65 years of age. Epidemiology, 7 (6), 612–618. doi:https://doi.org/10.1097/00001648-199611000-00008
  2. Bigliani, L. U., Flatow, E. L., Pollock, R. G. (Eds.). (1996). Fractures of the proximal humerus. Rockwood and Greenʼs Fractures in Adults. 4th ed. (pp. 1055–1107). Philadelphia: Lippincott-Raven Publishers.
  3. Neer, C. S. (1970). Displaced proximal humeral fractures. The Journal of Bone & Joint Surgery, 52 (6), 1077–1089. doi:https://doi.org/10.2106/00004623-197052060-00001
  4. Garnavos, C., Kanakaris, N. K., Lasanianos, N. G., Tzortzi, P., & West, R. M. (2012). New Classification System for Long-bone Fractures Supplementing the AO/OTA Classification. Orthopedics, 35 (5), e709–e719. doi:https://doi.org/10.3928/01477447-20120426-26
  5. Howard, L., Berdusco, R., Momoli, F., Pollock, J., Liew, A., Papp, S., … Lapner, P. (2018). Open reduction internal fixation vs non-operative management in proximal humerus fractures: a prospective, randomized controlled trial protocol. BMC Musculoskeletal Disorders, 19 (1). doi:https://doi.org/10.1186/s12891-018-2223-3
  6. Gerber, C., Werner, C. M., & Vienne, P. (2004). Internal fixation of complex fractures of the proximal humerus. Journal of Bone and Joint Surgery. British volume, 86 (6), 848–855.
  7. Matziolis, D., Kaeaeb, M., Zandi, S. S., Perka, C., & Greiner, S. (2010). Surgical treatment of two-part fractures of the proximal humerus: Comparison of fixed-angle plate osteosynthesis and Zifko nails. Injury, 41 (10), 1041–1046. doi:https://doi.org/10.1016/j.injury.2010.04.017
  8. Sanders, B. S., Bullington, A. B., McGillivary, G. R., & Hutton, W. C. (2007). Biomechanical evaluation of locked plating in proximal humeral fractures. Journal of Shoulder and Elbow Surgery, 16 (2), 229–234. doi:https://doi.org/10.1016/j.jse.2006.03.013
  9. Gardner, M. J., Weil, Y., Barker, J. U., Kelly, B. T., Helfet, D. L., & Lorich, D. G. (2007). The Importance of Medial Support in Locked Plating of Proximal Humerus Fractures. Journal of Orthopaedic Trauma, 21 (3), 185–191. doi:https://doi.org/10.1097/bot.0b013e3180333094
  10. Liew, A. S., Johnson, J. A., Patterson, S. D., King, G. J., & Chess, D. G. (2000). Effect of screw placement on fixation in the humeral head. Journal of Shoulder and Elbow Surgery, 9 (5), 423–426. doi:https://doi.org/10.1067/mse.2000.107089
  11. Lambert, S. M. (2018). Ischemia, healing and outcomes in proximal humeral fractures. EFORT Open Reviews, 3 (5), 304–315. doi:https://doi.org/10.1302/2058-5241.3.180005
  12. Xu, J., Zhang, C., & Wang, T. (2014). Avascular necrosis in proximal humeral fractures in patients treated with operative fixation: a meta-analysis. Journal of Orthopaedic Surgery and Research, 9 (1), 31. doi:https://doi.org/10.1186/1749-799x-9-31
  13. Alberio, R. L., Del Re, M., & Grassi, F. A. (2018). Minimally invasive plate osteosynthesis for proximal humerus fractures: a retrospective study describing principles and advantages of the technique. Advances in Orthopedics, 2018, 5904028, 1–10. doi:https://doi.org/10.1155/2018/5904028
  14. Chen, Y., Zeng, L., Zeng, L., Jiang, Y., Wei, H., & Zhang, W. (2018). Influence of medial support screws on the maintenance of fracture reduction after locked plating of proximal humerus fractures. Chinese Medical Journal, 131 (15), 1827. doi:https://doi.org/10.4103/0366-6999.237396
  15. Yoon, R. S., Dziadosz, D., Porter, D. A., Frank, M. A., Smith, W. R., & Liporace, F. A. (2014). A comprehensive update on current fixation options for two-part proximal humerus fractures. Injury, 45 (3), 510–514. doi:https://doi.org/10.1016/j.injury.2013.08.024
  16. Jabran, A., Peach, C., & Ren, L. (2018). Biomechanical analysis of plate systems for proximal humerus fractures: a systematic literature review. BioMedical Engineering OnLine, 17 (1), 47. doi:https://doi.org/10.1186/s12938-018-0479-3
  17. Dedukh, N. V., Nikolchenko, O. A., & Makarov, V. B. (2018). Restructuring of fleas around polyaccid, implanted in the dialysis of the femur. A journal of problems in biology and medicine, 1, 1 (142), 275–279. (in Ukrainian)
  18. Sawbones: biomechanical test materials: A Division of Pacific Research Laboratories. Sawbones Europe AB, 2018. Retrieved from : http://www.sawbones.com.
  19. Poppen, N. K., & Walker, P. S. (1978). Forces at the Glenohumeral Joint in Abduction. Clinical Orthopaedics and Related Research, &NA, (135), 165–170. doi:https://doi.org/10.1097/00003086-197809000-00035
  20. Epari, D. R., Kassi, J. P., Schell, H., & Duda, G. N. (2007). timely fracture-healing requires optimization of axial fixation stability. The Journal of Bone and Joint Surgery (American), 89 (7), 1575–1585. doi:https://doi.org/10.2106/jbjs.f.00247
  21. Cartner, J. L., Hartsell, Z. M., Ricci, W. M., & Tornetta, P. (2011). Can we trust ex vivo mechanical testing of fresh–frozen cadaveric specimens? The effect of postfreezing delays. Journal of Orthopaedic Trauma, 25 (8), 459–461. doi:https://doi.org/10.1097/bot.0b013e318225b875
  22. Lever, J. P., Aksenov, S. A., Zdero, R., Ahn, H., McKee, M. D., & Schemitsch, E. H. (2008). Biomechanical analysis of plate osteosynthesis systems for proximal humerus fractures. Journal of Orthopaedic Trauma, 22 (1), 23–29. doi:https://doi.org/10.1097/bot.0b013e31815c89ce
  23. Dietz, S., Hartmann, F., Schwarz, T., Nowak, T. E., Enders, A., Kuhn, S., … Rommens, P. M. (2012). Retrograde nailing versus locking plate osteosynthesis of proximal humeral fractures: a biomechanical study. Journal of Shoulder and Elbow Surgery, 21 (5), 618–624. doi:https://doi.org/10.1016/j.jse.2011.04.013
  24. Da Graсa, E., Okubo, R., Shimano, A. C., Mazzer, N., & Barbieri, C. H. (2013). Biomechanics of four techniques for fixation of the four-part humeral head fracture. Acta Ortopédica Brasileira, 21 (1), 34–39. doi:https://doi.org/10.1590/S1413-78522013000100007.
  25. Panchal, K., Jeong, J., Park, S., Kim, W., Min, H., Kim, J., & Ji, J. (2015). Clinical and radiological outcomes of unstable proximal humeral fractures treated with a locking plate and fibular strut allograft. International Orthopaedics, 40 (3), 569–577. doi:https://doi.org/10.1007/s00264-015-2950-0
  26. Clavert, P., Hatzidakis, A., & Boileau, P. (2016). Anatomical and biomechanical evaluation of an intramedullary nail for fractures of proximal humerus fractures based on tuberosity fixation. Clinical Biomechanics, 32, 108–112. doi:https://doi.org/10.1016/j.clinbiomech.2015.12.005
  27. Brunner, A., Resch, H., Babst, R., Kathrein, S., Fierlbeck, J., Niederberger, A., & Schmölz, W. (2012). The Humerusblock NG: a new concept for stabilization of proximal humeral fractures and its biomechanical evaluation. Archives of Orthopaedic and Trauma Surgery, 132 (7), 985–992. doi:https://doi.org/10.1007/s00402-012-1503-x
  28. Kathrein, S., Kralinger, F., Blauth, M., & Schmoelz, W. (2013). Biomechanical comparison of an angular stable plate with augmented and non-augmented screws in a newly developed shoulder test bench. Clinical Biomechanics, 28 (3), 273–277. doi:https://doi.org/10.1016/j.clinbiomech.2012.12.013
  29. Schliemann, B., Seifert, R., Theisen, C., Gehweiler, D., Wаhnert, D., Schulze, M., … Weimann, A. (2016). PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Archives of Orthopaedic and Trauma Surgery, 137 (1), 63–71. doi:https://doi.org/10.1007/s00402-016-2620-8

How to Cite

Makarov, V., Lipovskiy, V., Levadniy, Y., Boyko, I., & Lazarenko, G. (2023). Experimental study of stiffness fixation of a three-part fracture of the proximal humerus. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (4), 115–121. https://doi.org/10.15674/0030-598720184115-121

Issue

Section

ORIGINAL ARTICLES