DOI: https://doi.org/10.15674/0030-59872018431-40
Open Access Open Access  Restricted Access Subscription Access

X-ray parameters of low segmental lordosis of lumbar spine and their relation with sacral and pelvic tilt in frontal plane in patients with sacroiliac joint dysfunction

Volodymyr Staude, Yevgenya Radzishevska, Ruslan Zlatnyk

Abstract


Objective: to study X-ray parameters of low segments and lumbar spine lordosis in patients with sacroiliac joint dysfunction with healthy volunteers and to compare these parameters relations with x-rays parameters of pelvic tilt, sacral base tilt in frontal plane. Methods: 26 volunteers (18–34 y. o.) and 50 patients (20 to 71 y. o.) with sacroiliac joint dysfunction were examined. Inclusion criterias were: pain in the area posterior spinae iliac superior, irradiated to groin, buttocks, thigh; more than 3 months history of pain; failure the previous conservative treatment; positive 4 from 6 provocative tests. On X-rays we measured:
the angles of the cranial plane of sacrum tilt in frontal plane, pelvis and sacrum rotation around axial plane; the width of sacro-iliac joint space. We studied angles of lumbar, segmental lordosis LIV–LV, LV–SI, Albrecht angle, cranial plane of sacrum tilt in sagittal plane. Results: the average value of SS angle in vertical position was lower in all patients than in volunteers (1st cluster — 37,7°; 2nd — 42,8°; 3rd — 30,8°; 4th — 36,8°; volunteers
— 43,5°). Patients of all clusters had larger LV–SI angle than volunteers (1st cluster — 17,3°; 2nd — 18,6°; 3rd — 17,2°; 4th — 15,6°; volunteers — 12,2°). Patients of 1st, 3rd, 4th clusters had smaller LL angle than volunteers in vertical position. Patients of 2nd cluster had the same LL angle as volunteers have (1st cluster — 40,7°; 3rd — 37,2°; 4th — 43,5°; 2nd — 49,3°; volunteers — 48,3°). Conclusions: all patients with sacroiliac joint dysfunction had larger segmental lordosis LV–SI with adjacent sacroiliac joint compare to volunteers. Patients of the the 1st, 2nd, 3rd clusters had larger segmental lordosis LIV–LV than volunteers. Patients of the 1st, 3rd, 4th clusters had smaller lumbar lordosis. The most favorable results were in patients of the 2nd cluster. 


Keywords


sacro-iliac joint; sacrum tilt; pelvic tilt; lumbar segmental lordosis

References


Duval-Beaupère, G., Schmidt, C., & Cosson, P. (1992). A barycentremetric study of the sagittal shape of spine and pelvis: The conditions required for an economic standing position. Annals of Biomedical Engineering, 20 (4), 451–462. doi:10.1007/bf02368136

Duval-Beaupere, G., Boisaubert, B., Hecquet, J., Legaye, J., Marty, C., & Montigny, J. P. (2002). Sagittal profile of normal spine changes in spondylolisthesis. Severe Spondylolisthesis, 21–32. doi:10.1007/978-3-642-57525-9_3

Jacob, H., & Kissling, R. (1995). The mobility of the sacroiliac joints in healthy volunteers between 20 and 50 years of age. Clinical Biomechanics, 10 (7), 352–361. doi:10.1016/0268-0033(95)00003-4

Don Tigny, R. L. (2007). A detailed and critical biomechanical analysis of the sacroiliac joints and relevant kinesiology: the implications for lumbopelvic function or dysfunction. In A. Vleeming, V. Mooney, T. Dortman (Eds.) Movement, stability and low back pain. The essential role of pelvis. (pp. 265–278). Edinburg: Churchill Livingstone.

Gracovetsky, S. (2007). Stability or controlled instability. In A. Vleeming, V. Mooney, T. Dortman (Eds.) Movement, stability and low back pain. The essential role of pelvis (pp. 279–294). Edinburg: Churchill Livingstone.

Hungerford, B., & Gilleard, W. (2007). The pattern of intrapelvic motion and lum¬bopelvic muscle recruitment alters in the presence of pelvic girdle pain. In A. Vleeming, V. Mooney, R. Stoeckart (Eds.) Movement, Stability & Lumbopelvic Pain. Integration of Research and Therapy (pp. 361–376). Edinburg: Churchill Livingstone.

Staude, V. A., Radzishevska, Ye. B., & Zlatnyk, R. V. (2017). Radiometric parameters of sacrum and pelvis in patients with dysfunction of sacroiliac joint, affecting the spinae — pelvic balance in frontal plane. Orthopaedics, Travmatology and Prosthetics, 3 (607), 52–61. doi: 10.15674/0030-59872017252-61 (in Russian)

Korzh, N. A., Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2016). Stress-strain state of kinematic chain «lumbar spine – sacrum – pelvis» in case of pelvic tilt in frontal plane. Orthopaedics, Travmatology and Prosthetics, 1 (602), 54–61. doi: 10.15674/0030-59872016154-61 (in Russian)

Korzh, N. A., Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2015). Stress-strain state of kinematic chain «lumbar spine – sacrum – pelvis» in cases of asymmetry of articulations gaps of sacroiliac joint. Orthopaedics, Travmatology and Prosthetics, 3 (600), 5–14. doi: 10.15674/0030-5987201535-13 (in Russian)

Liliang, P. C., Lu, K., Liang, C. L., Tsai, Y. D., Wang, K. W., Chen, H. J. (2011) Sacroiliac joint pain after lumbar and lumbosacral fusion: findings using dual sacroiliac joint blocks. Pain Medicine, 12 (4), 565–570. doi: 10.1111/j.1526-4637.2011.01087.x.

Ivanov, A. A., Kiapour, A., Ebraheim, N. A., & Goel, V. (2009). Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study. Spine, 34 (5), E162–169. doi: 10.1097/BRS.0b013e3181978ea3.

Ha, K. Y., Lee, J. S., & Kim, K. W. (2008). Degeneration of sacroiliac Joint after instru¬mented lumbar or lumbosacral fusion. Spine, 33 (11), 1192–1198. doi: 10.1097/BRS.0b013e318170fd35

Klineberg, E., McHenry, T., Bellabarba, C., Wagner, T., & Chapman, J. (2008). Sacral insufficiency fractures caudal to instrumented posterior lumbosacral arthrodesis. Spine, 33(16), 1806–1811. doi:10.1097/brs.0b013e31817b8f23

Papadopoulos, E. C., Cammisa, F. P., & Girardi, F. P. (2008). P158. Sacral Fractures Complicating Thoracolumbar Fusion to the Sacrum. Spine, 33 (19), 1155–1156. doi: 10.1097/BRS.0b013e31817e03db

Nakajuku, S., Matsumoto, Y., Morito, T. [et al.] (2016). Radiological investigation of the lumbar spinal alignment in patients with sacroiliac joint disorders. Аbstracts book of 9th In¬terdisciplinary World Congress on Low Back & Pelvic Pain, Singapore, October 31–November 4 (рр. 444–445).

Laslett, M., Young, S. B., Aprill, C. N., & McDonald, B. (2003). Diagnosing painful sacroiliac joints: A validity study of a McKenzie evaluation and sacroiliac provocation tests. Australian Journal of Physiotherapy, 49 (2), 89–97. doi:10.1016/s0004-9514(14)60125-2

Vleeming, A., Albert, H. B., Ostgaard, H. C., Sturesson, B., & Stuge, B. (2008). European guidelines for the diagnosis and treatment of pelvic girdle pain. European Spine Journal, 17 (6), 794–819. doi:10.1007/s00586-008-0602-4

Perlman, R. (2016). Diagnosis of sacroiliac joint syndrome in low back / pelvic pain: reliability of 3 key clinical signs. Аbstracts book of 9th Interdisciplinary World Congress on Low Back & Pelvic Pain, Singapore, October 31–November 4, (рр. 408–409).

Irvin, R. (2007). Why and how to optimize posture. Movement, Stability & Lumbopelvic Pain, 239–252. doi:10.1016/b978-044310178-6.50018-9

Orel, A. M. (2007). Radiodiagnosis of the spine for manual therapists. Vidar. (in Russian)

Chen, Y. (1999). Vertebral centroid measurement of lumbar lordosis compared with the Cobb technique. Spine, 24 (17), 1786. doi:10.1097/00007632-199909010-00007

Vialle, R., Levassor, N., Rillardon, L., Templier, A., Skalli, W., & Guigui, P. (2005). Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. The Journal of Bone & Joint Surgery, 87 (2), 260–267. doi:10.2106/jbjs.d.02043

Ravin, T. (2007). Visualization of pelvic biomechanical dysfunction. In A. Vleeming, V. Mooney, R. Stoeckart (Eds.) Movement, Stability & Lumbopelvic Pain (pp. 327–339). Edinburg : Chyrchill Livingstone.doi:10.1016/b978-044310178-6.50024-4

Adams, M. (2007). The biomechanic of back pain. Edinburg: Churchill Livingstone.

Mac-Thiong, J., Berthonnaud, É., Dimar, J. R., Betz, R. R., & Labelle, H. (2004). Sagittal alignment of the spine and pelvis during growth. Spine, 29 (15), 1642–1647. doi:10.1097/01.brs.0000132312.78469.7b

Lord, M. J., Small, J. M., Dinsay, J. M., & Watkins, R. G. (1997). Lumbar lordosis. Spine, 22 (21), 2571–2574. doi:10.1097/00007632-199711010-00020

Murrie, V., Dixon, A., Hollingworth, W., Wilson, H., & Doyle, T. (2003). Lumbar lordosis: Study of patients with and without low back pain. Clinical Anatomy, 16 (2), 144–147. doi:10.1002/ca.10114

Sarikaya, S., Ozdolap, S., Gumstar, Ş., & Koс, U. (2007). Low back pain and lumbar angles in Turkish coal miners. American Journal of Industrial Medicine, 50 (2), 92–96. doi:10.1002/ajim.20417

Tuzun, C., Yorulmaz, İ., Cindas, A., & Vatan, S. (1999). Low back pain and posture. Clinical Rheumatology, 18 (4), 308–312. doi:10.1007/s100670050107

Smith, A., OʼSullivan, P., & Straker, L. (2008). Classification of sagittal thoraco-lumbo-pelvic alignment of the adolescent spine in standing and its relationship to low back pain. Spine, 33 (19), 2101–2107. doi:10.1097/brs.0b013e31817ec3b0

Vedantam, R., Lenke, L. G., Bridwell, K. H., Linville, D. L., & Blanke, K. (2000). The effect of variation in arm position on sagittal spinal alignment. Spine, 25 (17), 2204–2209. doi:10.1097/00007632-200009010-00011

Stagnara, P., Claude De Mauroy, J., Dran, G., Gonon, G. P., Costanzo, G., Dimnet, J., & Pasquet, A. (1982). Reciprocal angulation of vertebral bodies in a sagittal plane: approach to references for the evaluation of kyphosis and lordosis. Spine, 7 (4), 335–342. doi:10.1097/00007632-198207000-00003

Vaz, G., Roussouly, P., Berthonnaud, E., & Dimnet, J. (2001). Sagittal morphology and equilibrium of pelvis and spine. European Spine Journal, 11 (1), 80–87. doi:10.1007/s005860000224

Cox, J. M. (1999). Low Back Pain: Mechanism, Diagnosis and Treatment. Baltimor: Williams & Wilkins.

Yochum, T. R., & Rowe, L. J. (2005). Essentials of Skeletal Radiology. Philadelphia: Williams and Wilkins.

Kutcenko, V. A. (2009). Lumbar spondylolysthesis (pathogenesis, diagnosis, prognostication and treatment) (Doctoral dissertation). (in Russian)




Copyright (c) 2019 Volodymyr Staude, Yevgenya Radzishevska, Ruslan Zlatnyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.