Influence of lumbar-pelvic interactions on the stress-strained state of the lumbar spine
DOI:
https://doi.org/10.15674/0030-59872018424-30Keywords:
finite elements method, equal tensions, geometric modellingAbstract
Objective: to study the changes of the stress-strained state of the lumbar spine elements depending on the dynamics of the alues which characterize segmental and total lumbar
lordosis. Methods: the Workbench software was used; it used the methods of mechanics in a bundle with numerical methods of analysis, in particular, the method of finite elements.
The SolidWorks automated system is applied for construction of parametric three-dimensional geometric models. The study examined four schemes, two of which described the «intact» state of the lumbar spine, while the rest included pathological changes of increasing and decreasing of segmental and full lumbar lordosis angles. All four schemes had the same structure, and the differences consisted of the values of segmental and total
lumbar lordosis. Results: at normal conditions the values of lumbar-pelvic parameters (anatomical constant pelvic incidens and derivatives of sacral slop and global lumbar lordosis) distribution of tensions occurs evenly on the anterior and posterior supporting complexes of the vertebral motor segment. With increasing of pelvic incidens, sacral slop and global lumbar lordosis the value decreases in anterior supporting complex and
increases in the posterior. When pelvic incidens, sacral slop and global lumbar lordosis becomes lower, the tension decreases at the posterior support complex and increases at the anterior. Conclusions: increasing of tensions in the anterior support complex is positive correlated with a decreasing in pelvic incidens and its derivatives values of sacral slop and global lumbar lordosis (hypolordosis). At large pelvic incidens, sacral slop and global lumbar lordosis values (hyperlordosis), values increase in the posterior structures of the vertebral motor segment.
References
- Prodan, A. I., & Khvysiuk, A. N. (2007). Lumbar-pelvic balance parameters and degenerative changes of the lumbar segments. Spinal Surgery, 1, 44-51. (in Russian)
- Duval-Beaupere, G., Boisaubert, B., Hecquet, J., Legaye, J., Marty, C., & Montigny, J. P. (2002) Sagittal profile of normal spine changes in spondylolisthesis. In: Harms J., Stürz H. (eds.) Severe Spondylolisthesis. Steinkopff, Heidelberg
- Legaye, J., Duval-Beaupеre, G., Marty, C., & Hecquet, J. (1998). Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. European Spine Journal, 7 (2), 99–103. doi:https://doi.org/10.1007/s005860050038
- Vaz, G., Roussouly, P., Berthonnaud, E., & Dimnet, J. (2001). Sagittal morphology and equilibrium of pelvis and spine. European Spine Journal, 11 (1), 80–87. doi:https://doi.org/10.1007/s005860000224
- Akamaru, T., Kawahara, N., Tim Yoon, S., Minamide, A., Su Kim, K., Tomita, K., & Hutton, W. C. (2003). Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments. Spine, 28 (14), 1560–1566. doi:https://doi.org/10.1097/01.brs.0000076820.44132.99
- Cheh, G., Bridwell, K. H., Lenke, L. G., Buchowski, J. M., Daubs, M. D., Kim, Y., & Baldus, C. (2007). Adjacent segment disease followinglumbar/thoracolumbar fusion with pedicle screw instrumentation. Spine, 32 (20), 2253–2257. doi:https://doi.org/10.1097/brs.0b013e31814b2d8e
- Phan, K., Nazareth, A., Hussain, A. K., Dmytriw, A. A., Nambiar, M., Nguyen, D., … Mobbs, R. J. (2018). Relationship between sagittal balance and adjacent segment disease in surgical treatment of degenerative lumbar spine disease: meta-analysis and implications for choice of fusion technique. European Spine Journal, 27 (8), 1981–1991. doi:https://doi.org/10.1007/s00586-018-5629-6
- Labelle, H., Roussouly, P., Berthonnaud, É., Transfeldt, E., O’Brien, M., Chopin, D., … Dimnet, J. (2004). Spondylolisthesis, Pelvic Incidence, and Spinopelvic Balance. Spine, 29 (18), 2049–2054. doi:https://doi.org/10.1097/01.brs.0000138279.53439.cc
- Yamshchikov, O. N. (2014). Computer modelling in traumatology and orthopaedics (literature review). Herald of the Tambov Medical University, 19 (6), 1974-1979. (in Russian)
- ANSYS Workbench [web source]. Retrieved from : http:// www.ansys.com.
- Zienkiewicz, O. C. (2006). The finite element method: its basis and fundamentals. Amsterdam, Heidelberg: Butterworth-Heinemann, 631.
- Aliamovskyi, А. А. (2004). Engineering Analysis with Boundary Elements. Moscow: DMK Press, 432. (in Russian)
- Bernhardt, M., & Bridwell, K. H. (1989). Segmental analysis of the sagittal plane alignment of the normal thoracic and lumbar spines and thoracolumbar junction. Spine, 14 (7), 717–721. doi:https://doi.org/10.1097/00007632-198907000-00012
- Jackson, R. P., & McManus, A. C. (1994). Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. Spine, 19 (Supplement), 1611–1618. doi:https://doi.org/10.1097/00007632-199407001-00010
- Natarajan, R. N., Chen, B. H., An, H. S., & Andersson, G. B. (2000). Anterior cervical fusion. Spine, 25 (8), 955–961. doi:https://doi.org/10.1097/00007632-200004150-00010
- Shymon, V. M., Veretelnyk, O. V., Sheregiy, A. A., & Shymon M. V. (2015). Quantitative research of the stress-strain state of the human femur affected by poliomyelitis. Herald of the National Technical University Kharkiv Polytechnic Institute, 1 (1140), 128-136. (in Russian)
- Panjabi, M. M., Duranceau, J., Goel, V., Oxland, T., & Takata, K. (1991). Cervical human vertebrae quantitative three-dimensional anatomy of the middle and lower regions. Spine, 16 (8), 861–869. doi:https://doi.org/10.1097/00007632-199108000-00001
- Veretelnyk, O. V., Tkachuk, N. A., Tymchenko, I. B., Dynnik, А. А., & Pogorelaya, А. V. (2014). Mathematical and quantitative research of different constructions of orthoses for spondylodesis. Herald of the National Technical University «Kharkiv Polytechnic Institute», 29, 27-37. (in Russian)
- Heitplatz P. A, Hartle, S. L., & Gentle, C. (1998). R.3-dimensional large deformation FEA of a ligamentous C4-C7 spine unit. Computer Methods in Biomechanics and Biomedical Engineering. Gordon & Breach, 387–394.
- Veretelnyk, O. V. (2008). Modelling of the cervical spine element reaction to the force impact. Herald of the National Technical University «Kharkiv Polytechnic Institute». Topic of the issue «Theoretical Engineering and Computer-Aided Design», 2, 14-26. (in Russian)
- Kunin, I. A., Kirpichev, I. V., Maslov, L. B., & Vikhrev, S. V. (2013). Strength Properties of Short Bones in Hip Joint Disorders. Fundamental Research, 7, 328-333. (in Russian)
- Development of Simple Polymer Bioengineering Constructions with a Bioactive Component for Tissue Engineering with the Application of 3D printing. Retrieved from: http:// fcpir.ru/upload/iblock/879/stagesummary_coreb ofs000080000kif04cm57m6em8o.pdf.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2019 Valentyn Piontkovsky, Mykola Tkachuk, Oleg Veretelnik, Volodymyr Radchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).