DOI: https://doi.org/10.15674/0030-59872018424-30
Open Access Open Access  Restricted Access Subscription Access

Influence of lumbar-pelvic interactions on the stress-strained state of the lumbar spine

Valentyn Piontkovsky, Mykola Tkachuk, Oleg Veretelnik, Volodymyr Radchenko

Abstract


Objective: to study the changes of the stress-strained state of the lumbar spine elements depending on the dynamics of the alues which characterize segmental and total lumbar
lordosis. Methods: the Workbench software was used; it used the methods of mechanics in a bundle with numerical methods of analysis, in particular, the method of finite elements.
The SolidWorks automated system is applied for construction of parametric three-dimensional geometric models. The study examined four schemes, two of which described the «intact» state of the lumbar spine, while the rest included pathological changes of increasing and decreasing of segmental and full lumbar lordosis angles. All four schemes had the same structure, and the differences consisted of the values of segmental and total
lumbar lordosis. Results: at normal conditions the values of lumbar-pelvic parameters (anatomical constant pelvic incidens and derivatives of sacral slop and global lumbar lordosis) distribution of tensions occurs evenly on the anterior and posterior supporting complexes of the vertebral motor segment. With increasing of pelvic incidens, sacral slop and global lumbar lordosis the value decreases in anterior supporting complex and
increases in the posterior. When pelvic incidens, sacral slop and global lumbar lordosis becomes lower, the tension decreases at the posterior support complex and increases at the anterior. Conclusions: increasing of tensions in the anterior support complex is positive correlated with a decreasing in pelvic incidens and its derivatives values of sacral slop and global lumbar lordosis (hypolordosis). At large pelvic incidens, sacral slop and global lumbar lordosis values (hyperlordosis), values increase in the posterior structures of the vertebral motor segment. 


Keywords


stress-strained state; lumbar spine; segmental lordosis; total lordosis; finite elements method; equal tensions; geometric modelling

References


Prodan, A. I., & Khvysiuk, A. N. (2007). Lumbar-pelvic balance parameters and degenerative changes of the lumbar segments. Spinal Surgery, 1, 44-51. (in Russian)

Duval-Beaupere, G., Boisaubert, B., Hecquet, J., Legaye, J., Marty, C., & Montigny, J. P. (2002) Sagittal profile of normal spine changes in spondylolisthesis. In: Harms J., Stürz H. (eds.) Severe Spondylolisthesis. Steinkopff, Heidelberg

Legaye, J., Duval-Beaupеre, G., Marty, C., & Hecquet, J. (1998). Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. European Spine Journal, 7 (2), 99–103. doi:10.1007/s005860050038

Vaz, G., Roussouly, P., Berthonnaud, E., & Dimnet, J. (2001). Sagittal morphology and equilibrium of pelvis and spine. European Spine Journal, 11 (1), 80–87. doi:10.1007/s005860000224

Akamaru, T., Kawahara, N., Tim Yoon, S., Minamide, A., Su Kim, K., Tomita, K., & Hutton, W. C. (2003). Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments. Spine, 28 (14), 1560–1566. doi:10.1097/01.brs.0000076820.44132.99

Cheh, G., Bridwell, K. H., Lenke, L. G., Buchowski, J. M., Daubs, M. D., Kim, Y., & Baldus, C. (2007). Adjacent segment disease followinglumbar/thoracolumbar fusion with pedicle screw instrumentation. Spine, 32 (20), 2253–2257. doi:10.1097/brs.0b013e31814b2d8e

Phan, K., Nazareth, A., Hussain, A. K., Dmytriw, A. A., Nambiar, M., Nguyen, D., … Mobbs, R. J. (2018). Relationship between sagittal balance and adjacent segment disease in surgical treatment of degenerative lumbar spine disease: meta-analysis and implications for choice of fusion technique. European Spine Journal, 27 (8), 1981–1991. doi:10.1007/s00586-018-5629-6

Labelle, H., Roussouly, P., Berthonnaud, É., Transfeldt, E., O’Brien, M., Chopin, D., … Dimnet, J. (2004). Spondylolisthesis, Pelvic Incidence, and Spinopelvic Balance. Spine, 29 (18), 2049–2054. doi:10.1097/01.brs.0000138279.53439.cc

Yamshchikov, O. N. (2014). Computer modelling in traumatology and orthopaedics (literature review). Herald of the Tambov Medical University, 19 (6), 1974-1979. (in Russian)

ANSYS Workbench [web source]. Retrieved from : http:// www.ansys.com.

Zienkiewicz, O. C. (2006). The finite element method: its basis and fundamentals. Amsterdam, Heidelberg: Butterworth-Heinemann, 631.

Aliamovskyi, А. А. (2004). Engineering Analysis with Boundary Elements. Moscow: DMK Press, 432. (in Russian)

Bernhardt, M., & Bridwell, K. H. (1989). Segmental analysis of the sagittal plane alignment of the normal thoracic and lumbar spines and thoracolumbar junction. Spine, 14 (7), 717–721. doi:10.1097/00007632-198907000-00012

Jackson, R. P., & McManus, A. C. (1994). Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. Spine, 19 (Supplement), 1611–1618. doi:10.1097/00007632-199407001-00010

Natarajan, R. N., Chen, B. H., An, H. S., & Andersson, G. B. (2000). Anterior cervical fusion. Spine, 25 (8), 955–961. doi:10.1097/00007632-200004150-00010

Shymon, V. M., Veretelnyk, O. V., Sheregiy, A. A., & Shymon M. V. (2015). Quantitative research of the stress-strain state of the human femur affected by poliomyelitis. Herald of the National Technical University Kharkiv Polytechnic Institute, 1 (1140), 128-136. (in Russian)

Panjabi, M. M., Duranceau, J., Goel, V., Oxland, T., & Takata, K. (1991). Cervical human vertebrae quantitative three-dimensional anatomy of the middle and lower regions. Spine, 16 (8), 861–869. doi:10.1097/00007632-199108000-00001

Veretelnyk, O. V., Tkachuk, N. A., Tymchenko, I. B., Dynnik, А. А., & Pogorelaya, А. V. (2014). Mathematical and quantitative research of different constructions of orthoses for spondylodesis. Herald of the National Technical University «Kharkiv Polytechnic Institute», 29, 27-37. (in Russian)

Heitplatz P. A, Hartle, S. L., & Gentle, C. (1998). R.3-dimensional large deformation FEA of a ligamentous C4-C7 spine unit. Computer Methods in Biomechanics and Biomedical Engineering. Gordon & Breach, 387–394.

Veretelnyk, O. V. (2008). Modelling of the cervical spine element reaction to the force impact. Herald of the National Technical University «Kharkiv Polytechnic Institute». Topic of the issue «Theoretical Engineering and Computer-Aided Design», 2, 14-26. (in Russian)

Kunin, I. A., Kirpichev, I. V., Maslov, L. B., & Vikhrev, S. V. (2013). Strength Properties of Short Bones in Hip Joint Disorders. Fundamental Research, 7, 328-333. (in Russian)

Development of Simple Polymer Bioengineering Constructions with a Bioactive Component for Tissue Engineering with the Application of 3D printing. Retrieved from: http:// fcpir.ru/upload/iblock/879/stagesummary_coreb ofs000080000kif04cm57m6em8o.pdf.




Copyright (c) 2019 Valentyn Piontkovsky, Mykola Tkachuk, Oleg Veretelnik, Volodymyr Radchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.