Influence of impulse low-intensity ultrasound on implant osteointegration (a review of literature)

Authors

  • Svitlana Malyshkina
  • Vasyl Makolinets
  • Iryna Vishnyakova

DOI:

https://doi.org/10.15674/0030-598720122122-130

Keywords:

ultrasound, osteointegration, implants

Abstract

The analysis and systematization of scientific researches results (experimental and clinical) considering the osteointegration peculiarities of orthopaedic implants under the conditions of low intensity impulse ultrasound exposure is represented in the review. A brief characteristic of the ultrasound, of its penetrability into the human tissues and of the factors influencing its penetrability is given. The values of ultrasound intensities used in the medicine with different aims are represented. A number of effects which are characteristic of ultrasound and which appear during its absorption and dissemination within some particular ambience are briefly represented. The definition for the term osteointegration is given and also for those processes which take place on the bone-implant border at the cellar and molecular levels. The meaning of vascularization and cellar osteogenic differentiation in the titanium samples implantation area under the conditions of different intensity impulse ultrasound application is explained. The experimental and scientific researches about the impulse ultrasound effect on the cultivated osteogenic cells and also on the osteoreparation optimization in the implantation area of different samples, which consist of different biomaterials as bone transplantats, bioceramics materials, and also metal samples are discussed. The generalized data showed that the low intensity impulse ultrasound (30-50 mV/cm2 and at frequency 1.0 or 1.5 MHz) does not negatively influence on the surface structure and biodegradation of the researched biomaterials and positively influences on the intimate contact formation, i.e. on the implants osteointegration and transplantats reconstruction that was shown as the earlier formation and ripening of the bone tissue in the implantation area and as the presence of accurate bigger bone tissue areas on the implants surface and in its pores.

Unsolved issues connected with the ultrasound usage as the osteointegration optimizing factor in the field of biomaterials implantation.

References

  1. Байер В. Ультразвук в биологии и медицине / В. Байер, Э. Дернер пер. с нем. — Л., 1958. — С. 61–71.
  2. Горфинкель И.В. Использование ультразвука в профилактике и лечении гнойной хирургической инфекции / И.В. Горфинкель, А.Л. Франкфурт // Хирургия. — 1988. — № 2. — С. 151–155.
  3. Дєдух Н.В. Остеоінтеграція кісткової тканини з титановими імплантатами / Н.В. Дєдух, С.В. Малишкіна // Ортопед. травматол. — 2010. — № 1. — С. 45–49.
  4. Ерохина Г.А. Ультразвук как метод физиотерапии / Г.А. Ерохина // Российский медицинский журнал. — 1996. — № 4. — С. 45–48.
  5. Карлов А.В. Зависимость процессов репаративного остеогенеза от поверхностных свойств имплантатов для остеосинтеза / А.В. Карлов, И.А. Хлусов // Гений ортопедии. — 2003. — № 3. — С. 46–51.
  6. Керамические биоматериалы в ортопедии и травматологии / Н.А. Корж, О.Е. Вырва, Н.В. Дедух, С.В. Малышкина // Ортопед. травматол. — 2007. — № 3. — С. 20–30.
  7. Корж Н.А. Имплантационные материалы и остеогенез Сообщение I. Роль индукции и кондукции в остеогенезе / Н.А. Корж, В.А. Радченко, Л.А. Кладченко // Ортопед. травматол. — 2003. — № 1. — С. 41–47.
  8. Корж Н.А. Имплантационные материалы и остеогенез. Роль биологической фиксации и остеоинтеграции в реконструкции кости / Н.А. Корж, С.В. Малышкина, Л.А. Кладченко // Ортопед. травматол. — 2005. — № 4. — С. 118–127.
  9. Мелькумова А.С. Ультразвук / А.С. Мелькумова, З.С. Лисичкина, С.И. Горшков. — Москва: Медицина. — 1975. — 343 с.
  10. Биорезорбируемые полимеры в ортопедии и травматологии / В.А. Радченко, Н.В. Дедух, С.В. Малишкина, Л.М. Бенгус // Ортопед. травматол. — 2006. — № 3. — С. 116–124.
  11. Шимон В.М. Покриття на титанові імплантати та остеоінтеграція / В.М. Шимон, С.В. Малишкіна, Н.В. Дєдух // Укр. медичний альманах. — 2010. — № 5. — С. 239–244.
  12. Юдин В.А. Сравнительная характеристика эффективности средне- и низкочастотного ультразвука в лечении гнойной раны / В.А. Юдин, И.В. Горохов, С.В. Мостыка // Вестник хирургии. — 1995. — Т. 154, № 3. — С. 63–63.
  13. A new uncemented hydroxyapatite-coated femoral component for the treatment of femoral neck fractures / O.G. Sköldenberg, M.O. Salemyr, H.S. Bodén et al. // J. Bone Joint Surg. — 2011. — Vol. 93-B. — P. 665–677.
  14. Acceleration of tibial fracture-healing by non-invasion, low-intensity pulsed ultrasound / J.D. Heckman, J.P. Ryaby, J. McCabe et al. // J. Bone Joint Surg. — 1994. — Vol. 76-A, № 1. — P. 26–34.
  15. Albrektsson Т. Osteoinduction, osteoconduction and osteointegration / Т. Albrektsson, С. Johansson // Eur. Spine J. — 2001. — № 10. — P. 96–101.
  16. Current trends in the enhancement of biomaterial osteointegration: biophysical stimulation / M. Fini, G. Giavaresi, S. Setti et al. // Int. J. Artif. Organs. — 2004. — Vol. 27, № 8. — Р. 681–690.
  17. Cytokine release from osteoblasts in response to ultrasound stimulation / J.K. Li, W.H. Chang, J.C. Lin et al. // Biomaterials. — 2003. — Vol. 24. — P. 2379–2385.
  18. Della Rocca G.J. The science of ultrasound therapy for fracture healing / G.J. Della Rocca // Indian. J. Orthop. — 2009. — Vol. 43, № 2. — Р. 121–126.
  19. Dijkman B.G. Low-intensity pulsed ultrasound: Nonunions / B.G. Dijkman, S. Sprague, M. Bhandari // Indian J. Orthop. — 2009. — Vol. 43, № 2. — Р. 141–148.
  20. Dimitriou R. Biomaterial osseointegration. Enhancement with biophysical stimulation / R. Dimitriou, G.C. Babis // J. Musculoskelet. Neuronal. Interact. — 2007. — Vol. 7, № 3. — Р. 253–265.
  21. Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound / N.M. Rawool, B.B. Goldberg, F.J. Forsberg et al. // Ultrasound Med. — 2003. — Vol. 22. — P. 145–153.
  22. Effect of delayed pulsed-wave ultrasound on local pharmacokinetics and pharmacodynamics of vancomycin-loaded acrylic bone cement in vivo / X.Z. Cai, S.G. Yan, H.B. Wu et al. // Antimicrobial agents and chemotherapy. — 2007. — Vol. 51, № 9. — Р. 3199–3204.
  23. Effect of low intensity pulsed ultrasound on healing of an ulna defect filled with a bone graft substitute / W.R. Walsh, A.J. Langdown, J.W. Auld et al. // J. Biomed. Mater. Res. B Appl. Biomater. — 2008. — Vol. 86б № 1. — Р. 74–81.
  24. Effect of low-intensity pulsed ultrasound stimulation on porous hydroxyapatite blocks for posterolateral fusion of lumbar spine rabbits / X. Zhuo, H. Lü, D. Xu et al. // Transactions of nonferrous metals society of China. — 2010. — Vol. 20. — P. 1921–1927.
  25. Effect of noninvasive low intensity ultrasound on bone growth into porous-coated implants / M. Tanzer, E. Harvey, A. Kay et al. // J. Orthop. Res. — 1996. — Vol. 14. — P. 901–906.
  26. Effect of pulsed ultrasound in combination with gentamicin on bacterial killing of biofilms on bone cements in vivo / G.T. Ensing, B.L. Roeder, J.L. Nelson et al. // J. Appl. Microbiol. — 2005. — Vol. 99, № 3. — Р. 443–448.
  27. Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation / B.G. Santoni, N. Ehrhart, A.S. Turner, D.L. Wheeler // J. Orthop. Surg. Res. — 2008. — Vol. 3, № 20. — Режим доступа: http://www.josr-online.com/content/3/1/20.
  28. Effects of low-intensity pulsed ultrasound on dental implant osseointegration: a preliminary report / Y. Ustun, O. Erdogana, M. Kurkcua et al. // Eur. J. Dentistry. — 2008 — Vol. 2. — P. 254–262.
  29. Effects of low-intensity pulsed ultrasound on healing of mandibular fractures: an experimental study in rabbits / O. Erdogan, E. Esen , Y. Ustün et al. // J. Oral. Maxillofac. Surg. — 2006. — Vol. 64, № 2. — P. 180–188.
  30. Effects of near-field ultrasound stimulation on new bone formation and osseointegration of dental titanium implants in vitro and in vivo / [S.K. Hsu, W.T. Huang , B.S. Liu et al. // Ultrasound Med. Biol. — 2011. — Vol. 37, № 3. — P. 403–416.
  31. Hofmann A.A. Progression of human bone ingrowth into porous-coated implants. Rate of bone ingrowth in humans / A.A. Hofmann, R.D. Bloebaum, K.N. Bachus // Acta Orthop. Scand. — 1997. — Vol. 68. — P. 161–166.
  32. Human skin fibroblast collagenase: interaction with substrate and inhibitor / H.G. Welgus, J.J. Jeffrey, A.Z. Eisen et al. // Coll. Relat. Res. — 1985. — Vol. 5. — P. 167–179.
  33. In vitro effects of low-intensity ultrasound stimulation on the bone cells / J.S. Sun, R.C. Hong, W.H. Chang et al. // J. Biomed. Mater. Res. — 2001. — Vol. 57, № 3. — P. 449–456.
  34. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes / N. Doan, P. Reher, S. Meghji, M. Harris // J. Oral. Maxillofac. Surg. — 1999. — Vol. 57. — P. 409–419.
  35. Juehennec J. Histomorphometric analysis of the osseointegrration of different implants surfaces in the femoral epiphyses of rabbit / J. Juehennec, E. Goyenvalle, M. Lopez-Heredia et al. // Clin. Oral Implant. Res. — 2008. –Vol. 19, № 11. — P. 1103–1110.
  36. Kim Y.H. Uncemented porous-coated anatomic total hip replacement. Results at six years in a consecutive series / Y.H. Kim, V.E. Kim // J. Bone Joint. Surg. — 1993. — Vol. 75. — P. 6–13.
  37. Kobayashi M. Preliminary in vitro study on enhancement of bone-like hydroxyapatite formation on bio-active titanium alloy by low-intensity pulsed ultrasound waving for early bone bonding / M. Kobayashi, K. Noda, N. Tatematsu // J. Biomech. Sci. Eng. — 2010. — Vol. 5, № 4. — P. 449–460.
  38. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis / Y. Kuboki, H. Takita, D. Kobayashi et al. // J. Biomed. Mater. Res. — 1998. — Vol. 39, № 2. — P. 190–199.
  39. Evaluation of human recombinant bone morphogenetic protein-2-loaded tricalcium phosphate implants in rabbits′ bone defects / P. Laffarque, H.F. Hildebrand, M. Rtaimate et al. // Bone. — 1999. — Vol. 25, № 2. — P. 55–58.
  40. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells / K.S. Leung, W.H. Cheung, C. Zhang et al. // Clin. Orthop. Relat. Res. — 2004. — Vol. 418. — P. 253–259.
  41. Low-intensity pulsed ultrasound accelerates maturation of callus in patients treated with opening-wedge high tibial osteotomy by hemicallotasis / N. Tsumaki, M. Kakiuchi, J. Sasaki et al. // J. Bone Joint Surg. — 2004. — Vol. 86-A, № 11. — P. 2399–2405.
  42. Low-intensity pulsed ultrasound increases bone ingrowth into porous hydroxyapatite ceramic / T. Iwai, Y. Harada, K. Imura et al. // J. Bone Miner. Metab. — 2007. — Vol. 25, № 6. — Р. 392–399.
  43. Low-intensity transosseous ultrasound accelerates osteotomy healing in a sheep fracture model / M.E. Hantes, A.N. Mavrodontidis, C.G. Zalavras et al. // J. Bone Joint. Surg. — 2004. — Vol. 86-A, № 10. — P. 2275–2282.
  44. Mustafa K. Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone / K. Mustafa, J. Wroblewski, B.S. Lopez et al. // Clin. Oral Implants Res. — 2009. — Vol. 12. — P. 515–525.
  45. Emami A. No effect of low-intensity ultrasound on healing time of intramedullary fixed tibial fractures / A. Emami, M. Petren-Mallmin, S. Larsson // J. Orthop. Trauma. — 1999. — Vol. 13. — P. 252–257.
  46. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period / P.I. Brånemark, B.O. Hansson, R. Adell et al. // Scand. J. Plast. Reconstr. Surg. — 1977. — Vol. 16. — P. 1–132.
  47. Osteoconductivity of thermal-sparayed silver-containing hydroxyapatite coating in rat tibia / Y. Yonekura, H. Miyamoto, T. Shimazaki et al. // J. Bone Joint Surg. — 2011. — Vol. 93-B. — P. 644–649.
  48. Peng L. Implanting hydroxyapatite-coated porous titanium with bone morphoenetic protein-2 and hyaluronic acid into distal femoral metaphysic of rabbit / L. Peng, W. Bian, F. Liang // Chinese J. Traumatology. — 2008. — Vol. 11, № 3. — P. 179–185.
  49. Pertussis toxin-sensitive Galphai protein and ERK-dependent pathways mediate ultrasound promotion of osteogenic transcription in human osteoblasts / Y.J. Chen, C.J. Wang, K.D. Yang et al. // FEBS Lett. — 2003. — Vol. 554. — P. 154–158.
  50. Rammelt S. In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia / S. Rammelt, C. Heck, R. Bernhardt et al. // Orthopaedic Res. Soc. — 2007. — Vol. 25, № 8. — P. 1052–1061.
  51. Tanzer M. Enhancement of bone growth into porous intramedullary implants using noninvasive low intensity ultrasound / M. Tanzer, S. Kantor, J.D. Bobyn // J. Orthop. Res. — 2001. — Vol. 19. — P. 195–199.
  52. The effect of low-intensity pulsed ultrasound on autologous osteochondral plugs in a canine model / S.D. Cook, S.L. Salkeld, L.P. Patron et al. // Am. J. Sports. Med. — 2008. — Vol. 36, № 9. — Р. 1733–1741.
  53. The effects of ultrasonic stimulation on DP-bioglass bone substitute / F.H. Lin, C.C. Lin, C.M. Lu et al. // Med. Eng. Phys. — 1995. –Vol. 17, № 1. — P. 20–26.
  54. Histomorphometric analyses of bone interface with titanium-aluminum-vanadium and hydroxyapatite-coated implants by biomimetic process / R. Zagury, N.D. Harari, M.B. Conz et al. // Implant. Dent. — 2007. — Vol. 16, № 3. — P. 290–296.

How to Cite

Malyshkina, S., Makolinets, V., & Vishnyakova, I. (2012). Influence of impulse low-intensity ultrasound on implant osteointegration (a review of literature). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 122–130. https://doi.org/10.15674/0030-598720122122-130

Issue

Section

DIGESTS AND REVIEWS