Innovative methods for optimization of bone regeneration: mesenhymal bone cells (part 2) (literature review)

Authors

  • Mykola Korzh Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-0489-3104
  • Petro Vorontsov Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-5758-7223
  • Iryna Vishnyakova Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
  • Kateryna Samoilova Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0003-1806-3467

DOI:

https://doi.org/10.15674/0030-598720181105-116

Keywords:

mesenhymal stem cells, bone regeneration, implantation materials, cells culturing, regenerative medicine

Abstract

Objective: on the base of literature we analyzed different methods of mesenhymal stem cells using for optimization of bone regeneration.

Methods: we reviewed publications for the last 90 years from electronic data base PubMed, MEDLINE, thesis, articles, manuscripts and other relevant science sources of medical information. We have found more than 200 scientific works, 86 were included for analysis.

Results: mesenhymal stem cells have unique abilities — to differentiate into soft tissue cells and multiply in vitro, they possess immune modular and immune suppressive effects. It gives possibility to use them for therapeutic method in regenerative medicine for bone osteogenesis. In review we presented sources of mesenhymal stem cells, ways to get bone marrow puncture and its transplantation, mesenhymal stem cells culturing and possibilities to differentiate them into certain direction. We gave examples of independent and complex (with different implantation materials) using of mesenhymal stem cells. It was shown that mesenhimal stem cells transplantation had positive influence on bone regeneration process, it enlarge osteoblast differentiation, volume of new formed bone tissue and decrease the terms of bone formation. Advantages of mesenhymal stem cells using are minimal invasive procedures and possibility to enlarge number of cells during culturing. But during culturing cells become older and the growth slows down. Creation of bioconstructions on the base of different matrix can facilitate introduction into defect area and create a graft with required shape and size. Choice of material for matrix is debated issue. So further studies of complex bioengineering constructions which will possess peculiarities of bone tissues are go on.

Author Biographies

Mykola Korzh, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Orthopaedics and Traumatology 

 

Petro Vorontsov, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Orthopaedics and Traumatology 

 

Kateryna Samoilova, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

 

 

References

  1. Maksimov, A. (1925). Fundamentals of Histology: Part II. Teaching about the tissues. Leningrad: B.M.I. (in Russian)
  2. Fridenshteyn, A. Y., & Lalyikina, K. S. (1973). Induction of bone tissue and osteogenic progenitor cells. Moscow: Meditsina. (in Russian)
  3. Fridenshteyn, A. Y., & Chertkov, I. L. (1977). Cellular hematopoiesis (hematopoietic progenitor cells). Moscow: Meditsina. (in Russian)
  4. Horwitz, E., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F., … Keating, A. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393-395. doi: https://doi.org/10.1080/14653240500319234
  5. Zueva, E. E., Kurtova, A. V., & Komarova, L. S. (2005). Some biological features and therapeutic options. Gematologiya, 6, 705-724. (in Russian)
  6. Ham, A. W., Afanas'ev, U. I., Čencov, U. S., Cormack, D. H., & Vajsfel'd, L. I. (1983). Gistologiâ: V pâti tomah. Moskva: Mir. (in Russian)
  7. Semenov, M. G., Stepanova, Yu. V., & Troshchyeva, D. O. (2016). Prospects for the use of stem cells in reconstructive and reconstructive surgery of maxillofacial area. Orthopedics, traumatology and reconstructive surgery of childhood, 4(4), 84-92. doi: https://doi.org/10.17816/PTORS4484-92 (in Russian)
  8. Shao, J., Zhang, W., & Yang, T. (2015). Using mesenchymal stem cells as a therapy for bone regeneration and repairing. Biological Research, 48(1). doi: https://doi.org/10.1186/s40659-015-0053-4
  9. Astakhova, V. S. (2000). Osteogenic precursors of human bone marrow. Kiev: Phoenix. (in Russian)
  10. Satija, N. K., Singh, V. K., Verma, Y. K., Gupta, P., Sharma, S., Afrin, F., Sharma, M., Sharma, P., Tripathi, R. P., & Gurudutta, G. U. (2009). Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. Journal of cellular and molecular medicine, 13(11–12), 4385–4402. doi: https://doi.org/10.1111/j.1582-4934.2009.00857.x
  11. Colter, D. C., Class, R., DiGirolamo, C. M., & Prockop, D. J. (2000). Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences, 97(7), 3213-3218. doi: https://doi.org/10.1073/pnas.97.7.3213
  12. Chen, S., Fang, W., Ye, F., Liu, Y., Qian, J., Shan, S., … Sun, J. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American Journal of Cardiology, 94(1), 92-95. doi: https://doi.org/10.1016/j.amjcard.2004.03.034
  13. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., & Caplan, AI. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant, 16, 557–564.
  14. Koç, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., & Lazarus, H. M. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18(2), 307-307. doi: https://doi.org/10.1200/jco.2000.18.2.307
  15. Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., … Hofmann, T. (2002). Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences, 99(13), 8932-8937. doi: https://doi.org/10.1073/pnas.132252399
  16. Lataillade, J., Doucet, C., Bey, E., Carsin, H., Huet, C., Clairand, I., … Gourmelon, P. (2007). New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regenerative Medicine, 2(5), 785-794. doi: https://doi.org/10.2217/17460751.2.5.785
  17. Péault, B., Asatrian, G., Pham, D., Hardy, W. R., & James, A. W. (2015). Stem cell technology for bone regeneration: current status and potential applications. Stem Cells and Cloning: Advances and Applications, 39. doi: https://doi.org/10.2147/sccaa.s48423
  18. Bateman, M. E., Strong, A. L., McLachlan, J. A., Burow, M. E., & Bunnell, B. A. (2017). The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: a review. Frontiers in Endocrinology, 7. doi: https://doi.org/10.3389/fendo.2016.00171
  19. Akiyama, K., Yong-Ouk, Y., & Takayoshi, Y. (2012). Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Research & Therapy, 40(3), 1–13. doi: https://doi.org/10.1186/scrt131
  20. Saeed, H., Ahsan, M., Saleem, Z., Iqtedar, M., Islam, M., Danish, Z., & Khan, A. M. (2016). Mesenchymal stem cells (MSCs) as skeletal therapeutics–an update. Journal of Biomedical Science, 41(23), 1–15. doi: https://doi.org/10.1186/s12929-016-0254-3
  21. Le Blanc, K. (2003). Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy, 5(6), 485-489. doi: https://doi.org/10.1080/14653240310003611
  22. Zhang, X., Jiao, C., & Zhao, S. (2009). Role of mesenchymal stem cells in immunological rejection of organ transplantation. Stem Cell Reviews and Reports,5(4), 402-409. doi: https://doi.org/10.1007/s12015-009-9076-y
  23. Majumdar, M. K., Keane-Moore, M., Buyaner, D., Hardy, W. B., Moorman, M. A., McIntosh, K. R., & Mosca, J. D. (2003). Characterization and functionality of cell surface molecules on human mesenchymal stem cells. Journal of Biomedical Science, 10(2), 228-241. doi: https://doi.org/10.1159/000068710
  24. Hematti, P. (2011). Human embryonic stem cell-derived mesenchymal stromal cells. Transfusion, 51, 138S-144S. doi: https://doi.org/10.1111/j.1537-2995.2011.03376.x
  25. Kuznetsov, S. A., Mankani, M. H, & Gronthos, S. (2001). Circulating skeletal stem cells. Journal of Cell Biology, 153, 1133–1140.
  26. Rosada, C., Justesen, J., Melsvik, D., Ebbesen, P., & Kassem, M. (2003). The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcified Tissue International, 72(2), 135-142. doi: https://doi.org/10.1007/s00223-002-2002-9
  27. De Bari, C., Dell'Accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis & Rheumatism, 44(8), 1928-1942. doi: https://doi.org/10.1002/1529-0131(200108)44:8<1928::aid-art331>3.0.co;2-p
  28. Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the USA, 100, 5807–5812. doi: https://doi.org/10.1073/pnas.0937635100
  29. De Coppi, P., Bartsch, G., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., … Atala, A. (2007). Isolation of amniotic stem cell lines with potential for therapy. Obstetrical & Gynecological Survey, 62(5), 316-317. doi: https://doi.org/10.1097/01.ogx.0000261640.52511.eb
  30. Jackson, W. M., Lozito, T. P., Djouad, F., Kuhn, N. Z., Nesti, L. J., & Tuan, R. S. (2011). Differentiation and regeneration potential of mesenchymal progenitor cells derived from traumatized muscle tissue. Journal of Cellular and Molecular Medicine, 15(11), 2377-2388. doi: https://doi.org/10.1111/j.1582-4934.2010.01225.x
  31. Gao, X., Usas, A., Tang, Y., Lu, A., Tan, J., Schneppendahl, J., … Huard, J. (2014). A comparison of bone regeneration with human mesenchymal stem cells and muscle-derived stem cells and the critical role of BMP. Biomaterials, 35(25), 6859-6870. doi: https://doi.org/10.1016/j.biomaterials.2014.04.113
  32. Liu, Y., Wang, S., & Shi, S. (2012). The role of recipient T cells in mesenchymal stem cell-based tissue regeneration. The International Journal of Biochemistry & Cell Biology, 44(11), 2044-2050. doi: https://doi.org/10.1016/j.biocel.2012.08.003
  33. Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., … Ho, A. D. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33(11), 1402-1416.
  34. doi: https://doi.org/10.1016/j.exphem.2005.07.003
  35. Virk, M. S., & Lieberman, J. R. (2012). Biologic adjuvants for fracture healing. Arthritis Research & Therapy, 14(5), 225. doi: https://doi.org/10.1186/ar4053
  36. Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Proliferation, 3(4), 393-403. doi: https://doi.org/10.1111/j.1365-2184.1970.tb00347.x
  37. Luria, E. A., Panasyuk, A. F., & Friedenstein, A. Y. (1971). Fibroblast colony formation from monolayer cultures of blood cells. Transfusion, 11(6), 345-349. doi: https://doi.org/10.1111/j.1537-2995.1971.tb04426.x
  38. Kassem, M., Mosekilde, L., & Eriksen, E. F. (2009). 1,25-dihydroxyvitamin D3 potentiates fluoride-stimulated collagen type I production in cultures of human bone marrow stromal osteoblast-like cells. Journal of Bone and Mineral Research, 8(12), 1453-1458. doi: https://doi.org/10.1002/jbmr.5650081207
  39. Rickard, D. J., Kassem, M., Hefferan, T. E., Sarkar, G., Spelsberg, T. C., & Riggs, B. L. (2009). Isolation and characterization of osteoblast precursor cells from human bone marrow. Journal of Bone and Mineral Research, 11(3), 312-324. doi: https://doi.org/10.1002/jbmr.5650110305
  40. Marmotti, A., De Girolamo, L., Bonasia, D. E., Bruzzone, M., Mattia, S., Rossi, R., … Peretti, G. (2014). Bone marrow derived stem cells in joint and bone diseases: a concise review. International Orthopaedics, 38(9), 1787-1801. doi: https://doi.org/10.1007/s00264-014-2445-4
  41. Du, J., Shan, Z., Ma, P., Wang, S., & Fan, Z. (2013). Allogeneic bone marrow mesenchymal stem cell transplantation for periodontal regeneration. Journal of Dental Research, 93(2), 183-188. doi: https://doi.org/10.1177/0022034513513026
  42. Shevtsov, V. I., Efrofeev, S. A., Migalkin, N. S., Osipova E.V. (2003). Stimulation by bone marrow of osteogenesis in distraction regenerate (experimental study). Genius of Orthopedics, 3, 131-137. (in Russian)
  43. Kim, S., Shin, Y., Yang, K., Kim, S., Yoo, M., Han, S., … Lee, S. (2009). A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast(Ossron™) injection to treat fractures. BMC Musculoskeletal Disorders, 10(1). doi: https://doi.org/10.1186/1471-2474-10-20
  44. Pountos, I., Georgouli, T., Henshaw, K., Bird, H., Jones, E., & Giannoudis, P. V. (2010). The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. Journal of Orthopaedic Trauma, 24(9), 552-556. doi: https://doi.org/10.1097/bot.0b013e3181efa8fe
  45. Patel, D. M., Shah, J., & Srivastava, A. S. (2013). Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells International, 2013, 1-15. doi: https://doi.org/10.1155/2013/496218
  46. Herten, M., Sager, M., Benga, L., Fischer, J. C., Jäger, M., Betsch, M., … Grassmann, J. P. (2013). Bone marrow concentrate for autologous transplantation in minipigs. Veterinary and Comparative Orthopaedics and Traumatology, 26(01), 34-41. doi: https://doi.org/10.3415/vcot-11-11-0165
  47. Rohban, R., & Pieber, T. R. (2017). Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells International, 2017, 1-16. doi: https://doi.org/10.1155/2017/5173732
  48. Kheyfets, M. V. (2012). Autotransplantation of immobilized mesenchymal bone marrow stromal cells in lumbar spondylodesis in eksperiment. Kazanskiy meditsinskiy zhurnal, 93(2), 395-397. (in Russian)
  49. Connolly, J. F. (1998). Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clinical Orthopaedics and Related Research, 355S, S257-S266. doi: https://doi.org/10.1097/00003086-199810001-00026
  50. Liu, X. F., Liao, X., Luo, E., Chen, W., Bao, C., & Xu, H. H. (2014). Mesenchymal stem cells systemically injected into femoral marrow of dogs home to mandibular defects to enhance new bone formation. Tissue Engineering Part A, 140120073424008. doi: https://doi.org/10.1089/ten.tea.2012.0677
  51. Ghebes, C. A., Braham, M. V., Zeegers, A. V., Renard, A. J., Fernandes, H., & Saris, D. B. (2016). Means of enhancing bone fracture healing: optimal cell source, isolation methods and acoustic stimulation. BMC Biotechnology, 16(1). doi: https://doi.org/10.1186/s12896-016-0318-1
  52. Rakhimov, A. (2016). Stimulation of osteoreparation in the zone of modeled femoral pseudarthrosis in rats using autologous bone marrow. Genij Ortopedii, (4), 88-94. doi: https://doi.org/10.18019/1028-4427-2016-4-88-94 (in Russian)
  53. Han, D. S., Chang, H. K., Kim, K. R., & Woo, S. M. (2014). Consideration of bone regeneration effect of stem cells. Journal of Craniofacial Surgery, 25(1), 196-201. doi: https://doi.org/10.1097/scs.0000000000000378
  54. Saad, K. A., Abu-Shahba, A. G., El-Drieny, E. A., & Khedr, M. S. (2015). Evaluation of the role of autogenous bone-marrow–derived mesenchymal stem cell transplantation for the repair of mandibular bone defects in rabbits. Journal of Cranio-Maxillofacial Surgery, 43(7), 1151-1160. doi: https://doi.org/10.1016/j.jcms.2015.04.013
  55. Caralla, T., Joshi, P., Fleury, S., Luangphakdy, V., Shinohara, K., Pan, H., … Muschler, G. F. (2013). In vivo transplantation of autogenous marrow-derived cells following rapid intraoperative magnetic separation based on hyaluronan to augment bone regeneration. Tissue Engineering Part A, 19(1-2), 125-134. doi: https://doi.org/10.1089/ten.tea.2011.0622
  56. Lee, J. E., Heo, S. J., Koak, J. Y., Kim, S. K., & Han, C. H. (2012). Bone regeneration with rabbit bone marrow-derived mesenchymal stem cells and bone graft materials. The International Journal of Oral & Maxillofacial Implants, 6(27), 1389–1399.
  57. Zhong, W., Sumita, Y., Ohba, S., Kawasaki, T., Nagai, K., Ma, G., & Asahina, I. (2012). In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. platelet-rich plasma. PLoS ONE, 7(7), e40833. doi: https://doi.org/10.1371/journal.pone.0040833
  58. Russmueller, G., Moser, D., Spassova, E., Plasenzotti, R., Poeschl, P., Seemann, R., … Schopper, C. (2015). Tricalcium phosphate-based biocomposites for mandibular bone regeneration — a histological study in sheep. Journal of Cranio-Maxillofacial Surgery, 43(5), 696-704. doi: https://doi.org/10.1016/j.jcms.2015.03.022
  59. Connolly, J. F., Guse, R., Tiedeman, J., & Dehne, R. (1991). Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clinical Orthopaedics and Related Research, &NA;(266), 259-270. doi: https://doi.org/10.1097/00003086-199105000-00038
  60. Khanal, G. P., Garg, M., & Singh, G. K. (2004). A prospective randomized trial of percutaneous marrow injection in a series of closed fresh tibial fractures. International Orthopaedics, 28(3), 167-170. doi: https://doi.org/10.1007/s00264-004-0547-0
  61. Hernigou, P., Poignard, A., Beaujean, F., & Rouard, H. (2005). Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. The Journal of Bone and Joint Surgery-American Volume, 87(7), 1430-1437. doi: https://doi.org/10.2106/JBJS.D.02215
  62. Niedźwiedzki, T. (1993). Effect of bone marrow on healing of fractures, delayed unions and pseudoarthroses of long bones. Chirurgia Narządów Ruchu i Ortopedia Polska, 58(3),194–204.
  63. Le Nail, L., Stanovici, J., Fournier, J., Splingard, M., Domenech, J., & Rosset, P. (2014). Percutaneous grafting with bone marrow autologous concentrate for open tibia fractures: analysis of forty three cases and literature review. International Orthopaedics, 38(9), 1845-1853. doi: https://doi.org/10.1007/s00264-014-2342-x
  64. Wongchuensoontorn, C., Liebehenschel, N., Schwarz, U., Schmelzeisen, R., Gutwald, R., Ellis, E., & Sauerbier, S. (2009). Application of a new chair-side method for the harvest of mesenchymal stem cells in a patient with nonunion of a fracture of the atrophic mandible – a case report. Journal of Cranio-Maxillofacial Surgery, 37(3), 155-161. doi: https://doi.org/10.1016/j.jcms.2008.11.002
  65. Jäger, M., Herten, M., Fochtmann, U., Fischer, J., Hernigou, P., Zilkens, C., … Krauspe, R. (2010). Bridging the gap: Bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. Journal of Orthopaedic Research, 29(2), 173-180. doi: https://doi.org/10.1002/jor.21230
  66. Payer, M., Lohberger, B., Strunk, D., Reich, K. M., Acham, S., & Jakse, N. (2013). Effects of directly autotransplanted tibial bone marrow aspirates on bone regeneration and osseointegration of dental implants. Clinical Oral Implants Research, 25(4), 468-474. doi: https://doi.org/10.1111/clr.12172
  67. D'Ippolito, G., Schiller, P. C., Ricordi, C., Roos, B. A., & Howard, G. A. (1999). Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. Journal of Bone and Mineral Research, 14(7), 1115-1122. doi: https://doi.org/10.1359/jbmr.1999.14.7.1115
  68. Huibregtse, B. A., Johnstone, B., Goldberg, V. M., & Caplan, A. I. (2000). Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells. The Journal of Bone and Joint Surgery-American Volume, 82(5), 60. doi: https://doi.org/10.2106/00004623-200005000-00037
  69. Bruder, S. P., Fink, D. J., & Caplan, A. I. (1994). Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy. Journal of Cellular Biochemistry, 56(3), 283-294. doi: https://doi.org/10.1002/jcb.240560303
  70. Soltan, M., Smiler, D., & Choi, J. H. (2009). Bone marrow: orchestrated cells, cytokines, and growth factors for bone regeneration. Implant Dentistry, 18(2), 132-141. doi: https://doi.org/10.1097/id.0b013e3181990e75
  71. Sununliganon, L., Peng, L., Singhatanadgit, W., & Cheung, L. (2014). Osteogenic efficacy of bone marrow concentrate in rabbit maxillary sinus grafting. Journal of Cranio-Maxillofacial Surgery, 42(8), 1753-1765. doi: https://doi.org/10.1016/j.jcms.2014.06.011
  72. Kim, I. S., Cho, T. H., Lee, Z. H., & Hwang, S. J. (2013). Bone regeneration by transplantation of human mesenchymal stromal cells in a rabbit mandibular distraction osteogenesis model. Tissue Engineering Part A, 19(1-2), 66-78. doi: https://doi.org/10.1089/ten.tea.2011.0696
  73. Ben-David, D., Kizhner, T. A., Kohler, T., Müller, R., Livne, E., & Srouji, S. (2011). Cell-scaffold transplant of hydrogel seeded with rat bone marrow progenitors for bone regeneration. Journal of Cranio-Maxillofacial Surgery, 39(5), 364-371. doi: https://doi.org/10.1016/j.jcms.2010.09.001
  74. Fernandes, M. B., Guimarães, J. A., Casado, P., Cavalcanti, A. D., Gonçalves, N. N., Ambrósio, C. E., … Duarte, M. E. (2014). The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model. BMC Veterinary Research, 10(1), 36. doi: https://doi.org/10.1186/1746-6148-10-36
  75. Ivanov, S. Y., Bonartsev, A. P., Gazhva, Y. V., Zharkova, I. I., Mukhametshin, R. F., … Muraev, A. A. (2015). Development and preclinical studies of insulating membranes based on poly-3-hydroxybutyrate-co-3-hydroxyvalerate for guided bone regeneration. Biomeditsinskaia khimiia, 61(6), 717–723. doi: https://doi.org/10.18097/PBMC20156106717
  76. Malyshkina, S. V., Nikolchenko, O. A., Kosterin, O. A. (2012). Determination of in vitro regenerative potential of patients and their correlation with mineral density of bone tissue. Ukrainian medical almanac, 10(4), 69-74. (in Ukrainian)
  77. Pobel, Ye. A., Malyshkina, S. V., Nikolchenko, O. A., Vyshnyakova, I. V. (2013). Determination of in vitro osteoreparative potential in patients with fractures of long bones. Ukrainian medical almanac, 11(2), 80-86. (in Ukrainian)
  78. Bruder, S. P., Kurth, A. A., Shea, M., Hayes, W. C., Jaiswal, N., & Kadiyala, S. (1998). Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. Journal of Orthopaedic Research, 16(2), 155-162. doi: https://doi.org/10.1002/jor.1100160202
  79. Gan, Y., Dai, K., Zhang, P., Tang, T., Zhu, Z., & Lu, J. (2008). The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials, 29(29), 3973-3982.
  80. doi: https://doi.org/10.1016/j.biomaterials.2008.06.026
  81. Kitoh, H., Kitakoji, T., Tsuchiya, H., Mitsuyama, H., Nakamura, H., Katoh, M., & Ishiguro, N. (2004). Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone, 35(4), 892-898. doi: https://doi.org/10.1016/j.bone.2004.06.013
  82. Whyte, M. P., Kurtzberg, J., McALISTER, W. H., Mumm, S., Podgornik, M. N., Coburn, S. P., … Martin, P. L. (2003). Marrow cell transplantation for infantile hypophosphatasia. Journal of Bone and Mineral Research, 18(4), 624-636. doi: https://doi.org/10.1359/jbmr.2003.18.4.624
  83. Oksimets, V. M. (2014). The use of autologous mesenchymal stromal cells in the treatment of limb bone defects. Clinical Surgery, 10, 63-66. (in Russian)
  84. Jager, M., Jelinek, E., Wess, K., Scharfstadt, A., Jacobson, M., Kevy, S., & Krauspe, R. (2009). Bone marrow concentrate: a novel strategy for bone defect treatment. Current Stem Cell Research & Therapy, 4(1), 34-43. doi: https://doi.org/10.2174/157488809787169039
  85. Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukov, A., … Marcacci, M. (2001). Repair of large bone defects with the use of autologous bone marrow stromal cells. New England Journal of Medicine, 344(5), 385-386. doi: https://doi.org/10.1056/nejm200102013440516
  86. Marcacci, M., Kon, E., Moukhachev, V., Lavroukov, A., Kutepov, S., Quarto, R., … Cancedda, R. (2007). Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Engineering, 13(5), 947-955. doi: https://doi.org/10.1089/ten.2006.0271
  87. Kawate, K., Yajima, H., Ohgushi, H., Kotobuki, N., Sugimoto, K., Ohmura, T., … Takakura, Y. (2006). Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artificial Organs, 30(12), 960-962. doi: https://doi.org/10.1111/j.1525-1594.2006.00333.x

How to Cite

Korzh, M., Vorontsov, P., Vishnyakova, I., & Samoilova, K. (2023). Innovative methods for optimization of bone regeneration: mesenhymal bone cells (part 2) (literature review). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1), 105–116. https://doi.org/10.15674/0030-598720181105-116

Issue

Section

DIGESTS AND REVIEWS