Peculiarities of the osteoreparative process in implanting composites based on lactides and glycolids with different contents of tricalcium phosphate and hydroxyl apatite

Authors

  • Volodymyr Radchenko
  • Ninel Dedukh
  • Svitlana Malyshkina
  • Lyudmila Bengus
  • Inna Batura
  • Gennadiy Popov

DOI:

https://doi.org/10.15674/0030-59872010315-21

Keywords:

composite, lactides, glycolids, hydroxyl apatite, tricalcium phosphate, implantation, osteoreparation, biodegradation

Abstract

The osteoreparative process, which takes place when composites on the basis of lactides and glycolids in combination with hydroxyl apatite and tricalcium phosphate are implanted into a defect of the distal femoral metaphysis, was experimentally studied on white laboratory rats. Also, biodegradation of the composites was studied. It was found out that hydroxyl apatite delayed biodegradation of the composites, but imparted osteoconductive properties to them. Tricalcium phosphate rapidly degraded and was characterized with pronounced osteoconductivity. A high content of a polymer substance in a composition with a small amount (30 %) of tricalcium phosphate was accompanied by delayed osteogenesis.

References

  1. Автандилов Г. Г. Медицинская морфометрия [Текст] / Г. Г. Автандилов. — М.: Медицина, 1990. — 381 с.
  2. Васюк В. Л. «Біологічний» остеосинтез переломів великогомілкової кістки [Текст] / В. Л. Васюк // Ортопед. травматол. — 2000. — № 4. — С. 15–20.
  3. Биорезорбируемые полимеры в ортопедии и травматологии [Текст] / В. А. Радченко, Н. В. Дедух, С. В. Малышкина, Л. М. Бенгус // Ортопед. травматол. — 2006. — № 3. — С. 116–124.
  4. Саркисов Д. С. Микроскопическая техника [Текст] / Д. С. Саркисов, Ю. Л. Перова. — М.: Медицина, 1996. — 542 с.
  5. Щепеткин И. А. Кальцийфосфатные материалы в биологических средах [Текст] / И. А. Щепеткин // Успехи соврем. биол. — 1995. — Т. 115, № 1. — С. 58–73.
  6. Уикли Б. Электронная микроскопия для начинающих [Текст] / Б. Уикли. — М.: Мир, 1975. — 324 с.
  7. Claudi B. F. Biological osteosynthesis [Text] / B. F. Claudi, G. Oedekoven // Chirurg. — 1991. — Vol. 62, № 5. — P. 367–377.
  8. European convention for the protection of vertebrate animals used for experimental and other scientific purpose [Text]: Council of Europe 18.03.1986. — Strasbourg, 1986. — P. 52.
  9. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbit [Text] / K. Kurashina, H. Kurita, Q. Wu et al. // Biomaterials. — 2002. — Vol. 23. — P. 407–412.
  10. Comparative study of bone ingrowth into porous hydroxyapatite and tricalcium phosphate ceramics with four different pore size ranges [Text] / D. Mainard, L. Galois, K. Bordji et al. // J. Bone Jt. Surg. — 1997. — Vol. 79-B, Suppl. 1. — P. 4–8.
  11. Maxa J. Use of synthetic biodegradable polymers in medicine [Text] / J. Maxa, M. Dittrich // Ceska Slov. Farm. — 2001. — Vol. 50, № 1. — P. 28–34.
  12. Middleton J. C. Synthetic biodegradable polymers as orthopedic devices [Text] / J. C. Middleton, A. J. Tipton // Biomaterials. — 2000. — Vol. 21, № 23. — P. 2335–2346.
  13. Reynolds E. S. The use of lead citrate at high pH as an electronopaque stain in electron microscopy [Text] / E. S. Reynolds // J. Cell. Biol. — 1963. — Vol. 17. — P. 208–212.
  14. Simmons J. Fracture healing perspectives [Text] / J. Simmons // Clin. Orthop. — 1995. — № 200. — P. 100–113.
  15. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers [Text] / W. Suchanek, M. Yashima, M. Kakihana, M. Yoshimura // Biomaterials. — 1996. — № 17. — P. 1715–1723.

How to Cite

Radchenko, V., Dedukh, N., Malyshkina, S., Bengus, L., Batura, I., & Popov, G. (2010). Peculiarities of the osteoreparative process in implanting composites based on lactides and glycolids with different contents of tricalcium phosphate and hydroxyl apatite. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3), 15–21. https://doi.org/10.15674/0030-59872010315-21

Issue

Section

ORIGINAL ARTICLES