Radiological assessment of experimental mono-segmental posterior-lateral lumbar fusion using autologous platelet rich fibrin

Authors

  • Volodymyr Radchenko
  • Alexandr Palkin
  • Vera Kolesnichenko

DOI:

https://doi.org/10.15674/0030-59872017245-51

Keywords:

experimental pos¬terolateral lumbar spinal fusion, rabbits, local autograft, allograft, autologous platelet rich fibrin

Abstract

The results of the use of autologous platelet-rich fibrin, for pos­terolateral lumbar spinal fusion are discussed.

Objective: to evaluate the radiographic signs of experimental posterolateral lumbar spine fusion using fibrin-rich platelets.

Methods: mono segmental posterolateral lumbar spinal fusion performed in 42 adult male California rabbits aged 4–5 months, which were divided into 6 groups of 7 animals each. In the control group 1 grafts were not used in group 2 used the local autograft, group 3 — local autograft combined with fibrin-rich platelets, 4 — al­lograft of ilium, 5 — allograft from ilium combined with fibrin-rich platelets, 6 — fibrin-rich platelets.

Results: revealed ra­diographic characteristics of posterolateral osteoplastic fusion, namely the formation of continuous trabecular bone in the area of spinal fusion, preserved height of interbody gaps, homoge­nous structure of newly formed bone, increasing the intensity of X-ray images in fusion masses. In radiometric studies iden­tified more intensive bone density block of rabbits in groups 3 and 5, as well as forming a homogeneous bone accretion in group 6.

Conclusions: groups of rabbits with osteoplastic spinal fusion detected radiographic signs of bone formed block in 77.1 % of cases in the control decortication group of trans­verse processes — in 57.1 %. Results of roentgenometric zone fusion evaluation suggest that autologous platelet rich fibrin, promotes strong bone accretion.

Author Biographies

Volodymyr Radchenko

Sytenko Institute of Spine and Joint Pathology, Kharkiv. Ukraine

MD, Prof. in Orthopaedics and Traumatology

volod56@ukr.net

 

Alexandr Palkin

Sytenko Institute of Spine and Joint Pathology, Kharkiv. Ukraine

palkin110383@gmail.com

 

 

Vera Kolesnichenko

Sytenko Institute of Spine and Joint Pathology, Kharkiv. Ukraine

MD

veakol@rambler.ru

 

 

References

  1. European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. Strasbourg, March 18, 1986.
  2. Tymoshenko OP, Veretsun АG. Investigation of the diagnostic abilities of the «Х-rays» software complex. Medicine and... 2001;1:62–4. (in Russian)
  3. Brecevich AT, Kiely P, Abjornson C, Cammisa FP. A retrospective analysis of platelet rich fibrin matrix use in posterolateral spine arthrodesis. Available from: https://www.isass.org/abstracts/isass14_oral_posters/isass14-557-A-Retrospective-Analysis-of-Platelet-Rich-Fibrin Matrix-Use-in-Postero.html.
  4. Fischer CR, Cassilly R, Cantor W, Edusei E, Hammouri Q, Errico T. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedure. Eur Spine J. 2013;22:1423–35. doi: 10.1007/s00586-013-2718-4.
  5. Berquist TH. Imaging of the postoperative spine. Radiol Clin North Am. 2006;44(3):407–18. doi: 10.1016/j.rcl.2006.01.002.
  6. Blumenthal SL, Gill K. Can lumbar spine radiographs determine fusion in postoperative patients? Correlation of routine radiographs with a second surgical look at lumbar fusions. Spine. 1993;18(9):1186–89.
  7. Boden SD. Schimandle JH, Hutton WC. Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part II: Study of dose, carrier, and species. Spine. 1995;20(24):2633–44.
  8. Boden SD. Schimandle JH, Hutton WC. Volvo Award in basic sciences. The use of an osteoconductive grows factor for lumbar spinal fusion. Part I: Biology of spinal fusion. Spine. 1995;20(24):2626–32.
  9. Brodsky AE, Kovalsky ES, Khalil MA. Correlation of radiographic assessment of lumbar spine fusions with surgical exploration. Spine. 1991;16(6,Suppl.):S261–5.
  10. Hayeri MR, Tehranzadeh J. Diagnostic imaging of spinal fusion and complications. Appl Radiol. 2009;38:14–28.
  11. Parizel PM, van Goethem JW, van den Hauwe L. et al. Imaging of spinal implants and radiologic assessment of fusion. Instrumented fusion of the degenerative lumbar spine: state of the art, questions, and controversis. Eds. Szpalski M, Gunzburg R, Spengler DM, Nachemson A. Lippincot-Raven Publishers, Philadelphia, 1996. рр. 26–33.
  12. Su CY, Kuo YP, Tseng YH, Su CH, Burnouf T. In vitro release of grows factors from platelet-rich fibrin (PRF): proposal to optimize the clinical applications of PRF. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:56–61. doi: 10.1016/j.tripleo.2009.02.004
  13. Toffler M, Toscano N, Holtzclaw D, Del Corso M, Ehrenfest DD. Introducing Choukroun’s platelet rich fibrin (PRF) to the reconstructive surgery milieu. J Implant & Advanced Clinical. Dentistry (JIACD). 2009;1:21–31. doi: 10.13140/2.1.2586.2086.
  14. Kokdere NN, Baykul T, Findik Y. The use of platelet-rich fibrin (PRF) and PRF-mixed particulated autogenous bone graft in the treatment of bone defects: оn experimental and histomorphometrical study. Dent Res J. 2015;12(5):418–24. doi: 10.4103/1735-3327.166188.
  15. Zumstein MA, Berger S, Schober M, Boileau P, Nyffeler RW, Horn M, Dahinden CA. Leukocyte- and platelet-rich fibrin (L-PRF) for long-term delivery of growth factor in rotator cuff repair: review, preliminary results and future directions. Curr. Pharm. Biotechnol. 2012;13(7):1196–206. doi: 10.2174/138920112800624337.
  16. Carreon LY, Glassman SD, Anekstein Y, Puno RM. Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine. 2015;30(9):E243–6.
  17. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet- related biologic features. Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):45–50. doi: 10.1016/j.tripleo.2005.07.009.
  18. Schuler TC, Subach BR, Branch CL, Foley KT, Burkus JK; Lumbar Spine Study Group. Segmental lumbar lordosis: manual versus computer-assisted measurement using seven different techniques. J Spinal Disord Tech. 2004;17(5):372–9.
  19. Dohan Ehrenfes DM, de Peppo GM, Doglioli P, Sammartino G. Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors. 2009;27(1):63–9. doi: 10.1080/08977190802636713.
  20. Simonpieri A, Del Corso M, Sammartino G, Dohan Ehrenfest DM. The relevance of Choukroun's platelet-rich fibrin and metronidazole during complex maxillary rehabilitations using bone allograft. Part II: Implant surgery, prosthodontics, and survival. Implant Dent. 2009;18(3):220–9. doi: 10.1097/ID.0b013e31819b5e3f.
  21. Dohan Ehrenfest DM, Del Corso M, Diss A, Mouhyi J, Charrier JB. Three-dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane. J Periodontol. 2010;81(4):546–55. doi: 10.1902/ jop.2009.090531.
  22. Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: Current concepts. Am J Neuroradiol. 2015;26(8):2057–66.

How to Cite

Radchenko, V., Palkin, A., & Kolesnichenko, V. (2017). Radiological assessment of experimental mono-segmental posterior-lateral lumbar fusion using autologous platelet rich fibrin. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 45–51. https://doi.org/10.15674/0030-59872017245-51

Issue

Section

ORIGINAL ARTICLES