Mechanical properties of cortical fixators for anterior cruciate ligament reconstruction

Authors

DOI:

https://doi.org/10.15674/0030-59872017139-45

Keywords:

anterior crucial ligament, cortical fiction device, mechanical strength

Abstract

Reconstruction of the damaged anterior crucial ligament today is a routine surgery. Violation of graft fixation and its exten­sion are the most frequent causes of instability. Recently ac­quired cortical use button latches become popular.

Objective: to evaluate the possibility of using own cortical locking fixation with adaptive loop based on the study of its mechanical characteristics.

Methods: using the bursting of hydraulic machines tested two types of clamps with cortical adaptive loop: 1) Tight­Rope anterior crucial ligament (Arthrex Inc., Naples, FL) eg reverse thrust; 2) own, consisting of button plate and thread Fiberwire № 2 (Arthrex Inc., Naples, FL). To determineload ex­tension have made constant load of 50 H for 30 s. Next applied given sinusoidal cyclic preloading from 50 to 250 H with a fre­quency of 2 Hz. Repeat exertion after 50, 100, 500, 1 000 and 2 000 cycles of loading has been assessed. Stretched loop exten­sion of 1 mm/s to determine the maximum tensile strength.

Re­sults: the mean values of load extension did not differ (p > 0.05) in cortical locking own making ((2.07 ± 0.3) mm) and commer­cially available ((1.95 ± 0.2) mm). The difference between the to­tal cyclic extension after 2000 loading cycles was also statisti­cally significant — (1.1 ± 0.1) mm and factory (1.21 ± 0.13) mm in copyright holder. there is no difference overall in elongation (perednavantazhenoho and cyclic) — (3.05 ± 0.95) mm of plant holder, (3.28 ± 0.22) mm in own fixation device; maximum ten­sile strength — (876 ± 56) and (953 ± 48) H respectively.

Conclu­sions: yielded similar mechanical characteristics of the studied devices such as sufficient tensile strength and elongation op­portunity, allow us to recommend them for use in reconstruc­tive surgery of anterior crucial ligament.

References

  1. Korzh NA, Filipenko VA, Dedukh NV. Osteoarthritis – approaches for treatment. Visnyk orthopadii, travmatologii s protezuvannya. 2004;(3):37–40. (in Ukrainian)
  2. Chechik O, Amar E, Khashan M, Lador R, Eyal G, Gold A. An international survey on anterior cruciate ligament reconstruction practices. Int Orthop. 2013;37(2):201–6. doi: 10.1007/s00264-012-1611-9.
  3. Pereira H, Correlo VM, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. Migration of «bioabsorbable» screws in ACL repair. How much do we know? A systematic review. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):986–94. doi: 10.1007/s00167-013-2414-2.
  4. Ramsingh V, Prasad N, Lewis M. Pre-tibial reaction to bio-interference screw in anterior cruciate ligament reconstruction. Knee. 2014;21(1):91–4. doi: 10.1016/j.knee.2013.07.011.
  5. Laupattarakasem P, Laopaiboon M, Kosuwon W, Laupattarakasem W. Meta-analysis comparing bio-absorbable versus metal interference screw for adverse and clinical outcomes in ante¬rior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2014;22(1):142–53. doi: 10.1007/s00167-012-2340-8.
  6. Drogset JO, Straume LG, Bjørkmo I, Myhr G. A prospective randomized study of ACL-reconstructions using bone-patellar tendon-bone grafts fixed with bio-absorbable or metal interference screws. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):753–9. doi: 10.1007/s00167- 010-1353-4.
  7. Li S, Chen Y, Lin Z, Cui W, Zhao J, Su W. A systematic review of randomized controlled clinical trials comparing hamstring autografts versus bone- patellar tendon-bone autografts for the reconstruction of the anterior cruciate ligament. Arch Orthop Trauma Surg. 2012;132(9):1287–97. doi: 10.1007/s00402-012-1532-5.
  8. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, Paletta GA Jr. Incidence and trends of anterior cruciate ligament reconstruction in the United States Am J Sports Med. 2014;42(10):2363–70. doi: 10.1177/0363546514542796.
  9. Barrow AE, Pilia M, Guda T, Kadrmas WR, Burns TC. Femoral suspension devices for anterior cruciate ligament reconstruction: do adjustable loops lengthen? Am J Sports Med. 2014;42(2):343–9. doi: 10.1177/0363546513507769.
  10. Eguchi A, Ochi M, Adachi N, Deie M, Nakamae A, Usman MA Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device. Knee. 2014;21(3):743–8. doi: 10.1016/j.knee.2014.02.009.
  11. Kleweno CP, Jacir AM, Gardner TR, Ahmad CS, Levine WN. Biomechanical evaluation of anterior cruciate ligament femoral fixation techniques. Am J Sports Med. 2009;37(2);339–45. doi: 10.1177/0363546508326706.
  12. Boyle MJ, Vovos TJ, Walker CG, Stabile KJ, Roth JM, Garrett WE Jr Does adjustable-loop femoral cortical suspension loosen after anterior cruciate ligament reconstruction? A retrospective comparative study. Knee. 2015;22(4):304–8. doi: 10.1016/j.knee.2015.04.016.
  13. Petre BM, Smith SD, Jansson KS, de Meijer PP, Hackett TR, LaPrade RF, Wijdicks CA. Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med. 2013; 41 (2):416–22. doi: 10.1177/0363546512469875.
  14. Speirs A, Simon D, Lapner P. Evaluation of a new femoral fixation device in a simulated anterior cruciate ligament reconstruction. Arthroscopy. 2010;26(3):351–7. doi: 10.1016/j.arthro.2009.08.016.
  15. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy. 2006;22(6):660–8. doi: 10.1016/j.arthro.2006.04.082
  16. Rodríguez C, García TE, Montes S, Rodríguez L, Maestro A. In vitro comparison between cortical and cortico-cancellous femoral suspension devices for anterior cruciate ligament reconstruction: implications for mobilization. Knee Surg Sports Traumatol. Arthrosc. 2015;23(8):2324–9. doi: 10.1007/s00167-014-3055-9.
  17. Gifstad T, Drogset JO, Grontvedt T, Hortemo GS. Femoral fixation of hamstring tendon grafts in ACL reconstructions: the 2-year follow-up results of a prospective randomized controlled study. Knee Surg Sports Traumatol. Arthrosc. 2014;22(3):2153–62. doi: 10.1007/s00167-013-2652-3.
  18. Pasqualo M, Plante MJ, Monchik KO, Spenciner DB. A comparison of three adjustable cortical button ACL fixation devices. Knee Surg Sports Traumatol Arthrosc. 2015. doi: 10.1007/s00167- 015-3711-8.
  19. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion. Am J Sports Med. 2006;34:1790–800.
  20. Shelburne KB, Pandy MG, Anderson FC, Torry MR. Pattern of anterior cruciate ligament force in normal walking. J Biomech. 2004;37(6):797–805.
  21. Shelburne KB, Pandy MG. A dynamic model of the knee and lower limb for simulating rising movements. Comput Methods Biomech Biomed Engin. 2002;2:149–59. doi: 10.1080/10255840290010265
  22. Serpas F, Yanagawa T, Pandy M. Forward-dynamics simulation of anterior cruciate ligament forces develope during isokinetic dynamometry. Comput Methods Biomech Biomed Engin. 2002;5(1):33–43. doi: 10.1080/1025584021000001614.

How to Cite

Krasnoperov, S., Golovakha, M., & Shalomeev, V. (2017). Mechanical properties of cortical fixators for anterior cruciate ligament reconstruction. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1), 39–45. https://doi.org/10.15674/0030-59872017139-45

Issue

Section

ORIGINAL ARTICLES