Effect of natural hydroxyapatite and β-tricalciumphosphate on dynamic changes in the mechanical properties of experimental compact bone defect

Olexiy Korenkov

Abstract


Objective: to compare the effects of natural hydroxyapatite and β-tricalcium phosphate (β-TCP) on the dynamics of changes in the mechanical properties of experimental defect of corti­cal bone.

Methods: the experiment was performed on 48 white male rats. In the middle third of the femoral shaft reproduced perforated defect 2.5 mm in diameter to the medullary canal, which the animals of the 1st group filled osteoplastic materials «Cerabone®» (GA), and 2nd — «Сalc-i-oss®» (β-TCP). Fragments of the injured bone was investigated at 15, 30, 60, and 120 days by dynamic mikroindentition with the definition of micro-hard­ness and Young’s modulus of the field of implantation and osteo­plastic materials adjacent the parent bone.

Results: it was found that on the 15th day experiment microhardness and Young modu­lus of the defect area was predominantly caused by mechanical properties of the implanted material in its cavity («Cerabone®», «Сalc-i-oss®») and significantly exceeded those of the parent bone parameters. In the future, micro-hardness and Young’s modulus of implantation «Calc-i-oss®» gradually decreased and at 60 days. experiment are smaller than the parent bone in, and on the 120thday. r ose a nd caught up with her p erfor­mance. Microhardness and Young’s modulus of implantation «Cerabone®» throughout the experiment remained unchanged and significantly exceeded the value obtained for the adjacent region and the parent bone implantation «Calc-i-oss®».

Con­clusions: using the «Cerabone®» area of cortical bone defect becomes high and stable mechanical properties and osteo­plastic material «Calc-i-oss®» contributes to the full restora­tion of micro-hardness and rigidity of injury bathroom bones for 4 months.

Keywords


cortical bone; reparative osteogenesis; hydroxyapatite; β-tricalcium phosphate; micro-hardness; Young’s modulus

References


Barinov SM, Komlev VS. Bioceramics based on calcium phosphates. Moscow, 2005. 308 p. (in Russian)

Dorozhkin SV. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J Funct. Biomater. 2015;6(3):708–832. DOI:10.3390/jfb6030708.

Cohen C, Bernard R. Endodontics. Saint Petersburg, 2000. 345 p. (in Russian)

Pochon JP. Knochenersatzplastiken mit tricalciumphosphatkeramik im kindesalter. Aktuelle Probleme in Chirurgie und Orthopädie. 1990;36:146.

Jensen SS, Yeo A, Dard M, Hunziker E, Schenk R, Buser D. Evaluation of a novel biphasic calcium phosphate in standardized bone defects. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res. 2007;18(6):752–60. doi: 10.1111/j.1600-0501.2007.01417.x.

Mordenfeld A, Hallman M, Johansson CB, Albrektsson T. Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clin Oral. Implants Res. 2010;21(9):961–70. doi:10.1111/j.1600-0501.2010.01939.x.

Riachi F, Naaman N, Tabarani C, Aboelsaad N, Aboushelib MN, Berberi A, Salameh Z. Influence of material properties on rate of resorption of two bone graft materials after sinus lift using radiographic assessment. Int J Dent. 2012;2012:1–7. doi: 10.1155/2012/737262.

Sartori S, Silvestri M, Forni F, Icaro Cornaglia A, Tesei P, Cattaneo V. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res. 2003;14(3):369–72. doi: 10.1034/j.1600-0501.2003.140316.x

Zyman Z, Glushko V, Dedukh N, Malyshkina S, Ashukina N. Porous calcium phosphate ceramic granules and their behavior in differently loaded areas of skeleton. J Mater Sci Mater Med. 2008;19(5):2197–205. doi: 10.1007/s10856-007-3311-3.

Muschik M, Ludwig R, Halbhübner S, Bursche K, Stoll T. Beta-tricalcium phosphate as a bone substitute for-dorsal spinal fusion in adolescent idiopathic scoliosis – preliminary result of a prospective clinical study. Eur Spine J. 2001;10(2):178–84. doi: 10.1007/s005860100271.

Seidel P, Dingeldein E. Cerabone® – eine Spongiosa-Keramik bovine Ursprungs. Materialwissenschaft und Werkstofftechnik. 2004;35(4):208–12.

Steffen T, Stoll T, Arvinte T, Schenk RK. Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery. Eur Spine J. 2001;10(2):132–40. doi: 10.1007/s005860100325

Denisov-Nikolskii YuI, Mironov SP, Omel'yanenko NP, Matveichuk IV. Actual problems of theoretical and clinical osteoarthropathy. Moscow, 2005. 336 p. (in Russian)

Kadurin OK, Vyrva OE, Leontieva FS. Biophysical properties of compact bone tissue. Kharkov: Prapor, 2007. 136 p. (in Ukrainian)

Al-Hezaimi K, Ramalingam S, Al-Askar M, ArRejaie AS, Nooh N, Jawad F, Aldahmash A, Atteya M, Wang CY. Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo microcomputed tomographic and histologic experiment in rats. Int J Oral Sci. 2016;8(1):7–15. doi: 10.1038/ijos.2015.34.

Guda T, Walker JA, Singleton BM, Hernandez JW, Son JS, Kim SG, Oh DS, Appleford MR, Ong JL, Wenke JC. Guided bone regeneration in long-bone defects with a struc¬tural hydroxyapatite graft and collagen membrane. Tissue Eng Part A. 2013;19:(17–18):1879–88. doi: 10.1089/ ten.TEA.2012.0057

Martini L, Staffa G, Giavaresi G, Salamanna F, Parrilli A, Serchi E, Pressato D, Arcangeli E, Fini M. Long-term results following cranial hydroxyapatite prosthesis implantation in a large skull defect model. Plast Reconstr Surg. 2012;129(4):625e–35e. doi: 10.1097/ PRS.0b013e318244220d.

Ramalingam S, Al-Rasheed A, ArRejaie A, Nooh N, Al-Kindi M, Al-Hezaimi K. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats. Odontology. 2016;104(2):199–210. doi: 10.1007/s10266-015-0211-8.

Shimomura K, Moriguchi Y, Ando W, Nansai R, Fujie H, Hart DA, Gobbi A, Kita K, Horibe S, Shino K, Yoshikawa H, Nakamura N. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng. Part A. 2014;20(17–18):2291–304. doi: 10.1089/ten.tea.2013.0414.

Pankratov AS, Lekishvili MV, Kopetsky IS. Bone grafting in dentistry and maxillofacial surgery. Osteoplastic materials: A Guide for Physicians. Moscow, 2011. 272 p. (in Russian)

Tadic DA, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–94. doi: 10.1016/S0142-9612(03)00621-5

Ignatovich SR, Zakiev MI. Universal micro-nanoindentometr «Micron-gamma». Factory laboratory. Diagnostics of Materials. 2011;77(1):61–7. (in Russian)

Firstov SA, Ignatovich SR, Zakiev IM. Size effect at the micro/nano-indentation and its compensation taking into account the features of the initial contact. Problems of Strength. 2009;2:43-54. (in Russian)

Kolmakov AG, Terentev VF, Bakirov MB. Methods of measuring hardness. Moscow, 2005. 150 p. (in Russian)

Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.




DOI: https://doi.org/10.15674/0030-59872017114-20

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Olexiy Korenkov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.