Structural and functional properties of articular cartilage under various loading modes (literature review)




articular cartilage, physiological and non-physiological stress, immobilization, distraction, posttraumatic extra-articular deformity


The formation of extra-articular traumatic deformities is a com­plication that occurs in about a third of cases with nonunion or pseudarthrosis after isolated diaphyseal fractures of long bones.

Objective: based on the analysis of scientific informa­tion to determine the structural and functional properties of ar­ticular cartilage (AC) under physiological and non-physiological load to determine the impact on extra-articular traumatic deformities of the long bones.

Methods: he literature search conducted by e-databases (PubMed, Medline, Google Scholar, RISC), monographs, dissertations, abstracts of dissertations in the last 20 years.

Results: physiological load plays a key role in the development, operation, and maintenance of homeostasis nutrition of AC. Its increase, decrease or non-physiological re­distribution is one of the biggest factors of structural and func­tional disorders in the AC and, accordingly, the development of osteoarthritis. Today, ongoing study of the effect of mechani­cal stimuli of varying duration and strength of the functioning of cells and structural features of the AC matrix. We describe some of the mechanotransduction ways. It was found that exces­sive exercise, immobilization of a limb, its lengthening by dis­traction osteosynthesis leads to the development of structural and functional disorders in the AC in knee and ankle joints, which progresses with time. Subsequently, the destructive changes noted in the AC in contralateral limb. In clinical researches the relationship between the existence of stable post-traumatic deformities of the long bones of the limbs and the development of osteoarthritis are studied. However, it has not been studied terms destructive affection in the joints, their severity in rela­tion to the magnitude of deformation reversibility after restoring the anatomical axis of the limb.


Fayaz HC, Giannoudis PV, Vrahas MS, Smith RM, Moran C, Pape HC, Krettek C, Jupiter JB. The role stem cells in fracture healing and nonunion. Int Orthop. 2011;35(11):1586-97. doi: 10.1007/s00264-011-1338-z.

Popsuishapka O, Uzhigova O, Litvishko V. Rate of nonunion and delayed union of fragments in isolated diaphyseal fractures of long bones of the extremities. Orthopaedics, Traumatology and Prosthetics. 2013;(1):39–43. doi: 10.15674/0030-59872013139-43.

Engsberg J, Leduc S, Ricci W, Borrelli J Jr. Improved function and joint kinematics after correction of tibial malalignment. Am J Orthop (Belle Mead NJ). 2014 Dec;43(12):E313-8.

Marti RK, van Heerwaarden RJ. Osteotomies for posttraumatic deformities. First ed., Georg Thieme Verlag, 2008. 704 p.

Paley D. Principles of deformity correction. 2002.806 p.

Fan CH. One-stage femoral osteotomy and computer-assisted navigation total knee arthroplasty for osteoarthritis in a patient with femoral subtrochanteric fracture malunion. Case Rep Orthop. 2014;2014:645927. doi: 10.1155/2014/645927.

Lonner JH, Siliski JM, Lotke PA. Simultaneous femoral osteotomy and total knee arthroplasty for treatment of osteoarthritis associated with severe extra-articular deformity. J Bone Joint Surg Am. 2000 Mar;82(3):342-8.

Pavlova VN, Pavlov GG, Shostak NA, Slutskii LI. Joint: morphology, clinics, diagnostics, treatment. Moskow: ООО «Izdatelstvo «Meditsinskoe informatsionnoe agenstvo», 2011. 552 p.

Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67-97.

Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM. Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheumatism. 2000;43(9):2091–99.

Ikenoue T, Trindade MC, Lee MS, Lin EY, Schurman DJ, Goodman SB, Smith RL. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res. 2003 Jan;21(1):110-6. doi: 10.1016/S0736-0266(02)00091-8.

Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000 Jun;122(3):252-60.

Natenstedt J, Kok AC, Dankelman J, Tuijthof GJ. What quantitative mechanical loading stimulates in vitro cultivation best? J Exp Orthop. 2015 Dec;2(1):15. doi: 10.1186/s40634-015-0029-x.

Nam J, Aguda BD, Rath B, Agarwal S. Biomechanical thresholds regulate inflammation through the NF-kappaB pathway: experiments and modeling. PLoS One. 2009;4(4):e5262. doi: 10.1371/journal.pone.0005262.

Bader DL, Salter DM, Chowdhury TT. Biomechanical influence of cartilage homeostasis in health and disease / D. L. Bader, D. M. Salter, T. T. Chowdhury // Arthritis. 2011;2011:979032. doi: 10.1155/2011/979032.

Leong DJ, Li YH, Gu XI, Sun L, Zhou Z, Nasser P, Laudier DM, Iqbal J, Majeska RJ, Schaffler MB, Goldring MB, Cardoso L, Zaidi M, Sun HB. Physiological loading of joints prevents cartilage degradation through CITED2. FASEB J. 2011 Jan;25(1):182-91. doi: 10.1096/fj.10-164277.

Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006 Jan 1;11:529-43.

Yokota H, Goldring MB, Sun HB. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem. 2003 Nov 21;278(47):47275-80.

Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther. 2003;5(2):94-103. doi: 10.1186/ar630.

Leong DJ, Sun HB Mechanical loading: potential preventive and therapeutic strategy for osteoarthritis. J Am Acad Orthop Surg. 2014 Jul;22(7):465-6. doi:

Buckwalter JA, Martin JA, Brown TD. Perspectives on chondrocyte mechanobiology and osteoarthritis. Biorheology. 2006;43(3-4):603-9.

Wang Q, Zheng YP, Wang XY, Huang YP, Liu MQ, Wang SZ, Zhang ZK, Guo X. Ultrasound evaluation of site-specific effect of simulated microgravy on articular cartilage. Ultrasound Med Biol. 2010 Jul;36(7):1089-97. doi: 10.1016/j.ultrasmedbio.2010.04.018.

Wei L, Hjerpe A, Brismar BH, Svensson O. Effect of load on articular cartilage matrix and the development of guinea-pig osteoarthritis. Osteoarthritis Cartilage. 2001 Jul;9(5):447-53.

Stetsula VI, Veklich VV. Osnovi upravlyaemogo chreskostnogo osteosinteza. Мoskow: Medicine, 2003. 224 p.

Fink B, Neuen-Jacob E, Lienert A, Francke A, Niggemeyer O, Rüther W. Changes in canine skeletal muscles during experimental tibial lengthening. Clin Orthop Relat Res. 2001 Apr;(385):207-18.

Matveeva EL, Rusova TV, Erofeev SA, Shreyner AA. [The changes in the carbohydrate component of the proteoglycans of knee joint tissues during the leg lengthening in dogs]. Genii ortopedii. 1997;(1):71-3.

Stupina TA, Shchudlo MM. [Articular cartilage: changes during transosseous distraction osteosynthesis, physiological and reparative regeneration (review). Genii ortopedii. 2012;(4):137-41.

Nakamura E, Mizuta H, Takagi K. Knee cartilage injury after tibial lengthening. Radiographic and histological studies in rabbits after 3–6 months. Acta Orthop Scand. 1995;66: 313-6.

Cai G, Saleh M, Yang L, Coulton L. The effect of tibial lengthening on immature articular cartilage of the knee joint. 2006;14:1049-55. doi:10.1016/j.joca.2006.04.006.

Roemhildt ML, Beynnon BD, Gardner-Morse M, Anderson K, Badger GJ. Tissue modification of the lateral compartment of the tibio-femoral joint following in vivo varus loading in the rat. J Biomech Eng. 2012 Oct;134(10):104501. doi:10.1115/1.4007453.

Roemhildt ML, Beynnon BD, Gardner-Morse M, Badger G, Grant C. Changes induced by chronic in vivo load alteration in the tibiofemoral joint of mature rabbits. J Orthop Res. 2012 Sep;30(9):1413-22. doi:10.1002/jor.22087.

Roemhildt ML, Coughlin KM, Peura GD, Badger GJ, Churchill D, Fleming BC, Beynnon BD. Effects of increased chronic loading on articular cartilage material properties in the Lapine tibiofemoral joint. J Biomech. 2010 Aug 26;43(12):2301-8. doi: 10.1016/j.jbiomech.2010.04.035.

Vanwanseele B, Lucchinetti E, Stüssi E. The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions. Osteoarthritis Cartilage. 2002 May;10(5):408-19. doi: 10.1053/joca.2002.0529.

Haapala J, Arokoski J, Pirttimäki J, Lyyra T, Jurvelin J, Tammi M, Helminen HJ, Kiviranta I. Incomplete restoration of immobilization induced softening of young beagle knee articular cartilage after 50-week remobilization. Int J Sports Med. 2000;21:76–81.

Belangero PS, Tamaoki MJ, Nakama GY, Shoiti MV, Gomes RV, Belloti JC. How does the Brazilian orthopedic surgeon treat acute lateral ankle sprain? Rev Bras Ortop. 2015 Dec 12;45(5):468-73. doi: 10.1016/S2255-4971(15)30437-7.

Baroni BM, Galvao AQ, Ritzel CH, Diefenthaeler F, Vaz MA. Dorsiflexor and plantar flexor neuromuscular adaptations at two-week immobilization after ankle sprain. Rev Bras Med Esporte. 2010;16(5):358-62. doi: 10.1590/S1517-86922010000500008.

Ganse B, Zange J, Weber T, Pohle-Fröhlich R, W Johannes B, Hackenbroch M, Rittweger J, Eysel P, Koy T. Muscular forces affect the glycosaminoglycan content of joint cartilage. Unloading in human volunteers with the HEPHAISTOS lower leg orthosis. Acta Orthopaedica. 2015 Jun;86(3):388-92. doi: 10.3109/17453674.2014.989382.

Kunz RI, Coradini JG, Silva LI, Bertolini GR, Brancalhao RM, Ribeiro LF. Effects of immobilization and remobilization on the ankle joint in Wistar rats. Braz J Med Biol Res. 014 Oct;47(10):842-9.

Vasilceac FA, Renner AF, Teodoro WR, Mattiello-Rosa SM. The remodeling of collagen fibers in the rats ankles submitted to immobilization and muscle stretch protocol. Rheumatol Int. 2011; 31:737-42. doi: 10.1007/s00296-010-1371-z.

Ando A, Hagiwara Y, Chimoto E, Hatori K, Onoda Y, Itoi E. Intra-articular injection of hyaluronan diminishes loss of chondrocytes in a rat immobilized-knee model. Tohoku J Exp Med. 2008 Aug;215(4):321-31. doi: 10.1620/tjem.215.321.

Ando A, Suda H, Hagiwara Y, Onoda Y, Chimoto E, Saijo Y, Itoi E. Reversibility of immobilization-induced articular cartilage degeneration after remobilization in rat knee joints. Tohoku J Exp Med. 2011;224(2):77-85. doi: 10.1620/tjem.224.77.

Del Carlo RJ, Galvao MR, Viloria MIV, Natali AJ, Barbosa AT, Monteiro BS, Pinheiro LCP. Experimental immobilization and remobilization rat knee joints: clinical and microscopic study. Arq Bras Med Vet Zootec. 2007; 59:363-70. doi: 10.1590/S0102-09352007000200015.

Leroux MA, Cheung HS, Bau JL, Wang JY, Howell DS, Setton LA. Altered mechanics and histomorphometry of canine tibial cartilage following joint immobilization. Osteoarthritis Cartilage. 2001;9(7):633-40.

Zhou Q, Wei B, Liu S, Mao F, Zhang X, Hu J, Zhou J, Yao Q, Xu Y, Wang L. Cartilage matrix changes in contralateral mobile knees in a rabbit model of osteoarthritis induced by immobilization. BMC Musculoskeletal Disorders. 2015 Aug 25;16:224. doi 10.1186/s12891-015-0679-y.

Korzh M, Romanenko K, Karpinsky M, Prozorovsky D, Yaresko O. Mathematic modeling of the influence of femur malalignment on the bearing of lower extremity joints. Orthopaedics, Traumatology and Prosthetics. 2015;(4):25–30. doi: 10.15674/0030-59872015425-30.

Deschamps G, Khiami F, Catonné Y, Chol C, Bussière C, Massin P; French Hip and Knee Society (S.F.H.G.). Total knee arthroplasty for osteoarthritis secondary to extra-articular malunions. Orthop Traumatol Surg Res. 2010 Dec;96(8):849-55. doi: 10.1016/j.otsr.2010.06.010.

Xiao-Gang Z, Shahzad K, Li C. One-stage total knee arthroplasty for patients with osteoarthritis of the knee and extra-articular deformity. Int Orthop. 2012; 36(12):2457–63. doi: 10.1007/s00264-012-1695-2.




Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>