Modeling of fusion in animals (review)

Authors

DOI:

https://doi.org/10.15674/0030-598720152112-119

Keywords:

spinal fusion, modeling, animals

Abstract

A review based on an analysis of scientific literature and includes sections: «Animals as an experimental model for spinal fusion», «Spinal fusion with using bone grafts», «Formation of spinal fusion taking in consideration of biological processes», «Experimental assessment of different types of spinal fusion after using rigid stabilization», «Dynamic fixation» and «New generation of spinal cages based on bioabsorbing polymers». It is shown that among small animals mice with similar to human been metabolic rate may be used for spinal fusion on the lumbar spine. Reconstitution of anterior and posterior spinal fusion is possible not only in the lumbar spine but in the tail one in small animals. Impact of rigid fixation on functional spinal units they study on rabbits and sheep. For testing of spinal implants that they use in humans the most suit­able for the anatomical parameters of the vertebral bodies is calf. Prediction of fusion results based on biological processes including molecular mechanisms involved in the formation of bone healing. The role of growth factors in the formation of fusion was assessed. Analyzing rigid and dynamic stabilization one should consider the state of the adjacent functional spinal units. Attention of many researchers focused on dynamic stabilization of the spine which provides the possibility of physiological mobility. It increasingly studied experimentally including on large animals. Application of bioabsorbable materials (polilaktyde and polyglycolide) for interbody fusion is a promising trend that requires in-depth study. Models of fusion reproducing on animals maximally simple and reliable allow to study implants with different properties for assess­ment of the feasibility of their using for spinal fusion in humans.

References

  1. Boden S. D. Overview of the biology of the lumbar spine fusion and principles for selecting a bone graft substitute / S. D. Boden // Spine. — 2002. — Vol. 27. — P. 26–31.
  2. Primary spinal segment stability with a stand alone cage: in vitro evaluation of successful goat model / M. R. Krijnen, D. Mensch, J. H. van Dieen [et al.] // Acta Orthop. — 2006. — Vol. 77. — P. 454–461.
  3. Radiographical, histological and chemical evaluation of bio¬resorbable 70/30 poly (L-D, L-lactide) interbody fusion cages in goat model / M. R. Krijnen, M. G. Mullender, T. H. Smith [et al.] // Spine. — 2006. — Vol. 31. — P. 1559–1567.
  4. Bone mineral density of the vertebral bodies after fusion (literature review) / V. O. Radchenko, S. B. Kosterin, N. V. Dedukh, N. A. Ashukina // Orthopaedics, traumatology and prosthetics. – 2011. — № 4. — P. 100–104, doi: http://dx.doi.org/10.15674/0030-598720114100-104.
  5. Schimandle J. H. Spine update. The use of animal models to study spinal fusion / J. H. Schimandle, S. D. Boden // Spine. — 1994. — Vol. 19. — P. 1998–2006.
  6. Rao R. D. Posterolateral intertransverse lumbar fusion in a mouse model: surgical anatomy and operative technique / R. D. Rao, V. B. Bagaria, B. C. Cooley // Spine J. — 2007. — Vol. 7. — P. 61–67.
  7. Alexanian A. R. Quiescent neural cells regain multipotent stem cell characteristics influenced by adult neural stem cells in coculture / A. R. Alexanian, S. N. Kurpad // Exp. Neurol. — 2005. — Vol. 191. — P. 193–197.
  8. Voncken J. W. Genetic modification of the mouse. General technology; pronuclear and blastocyst injection / J. W. Vonck¬en // Methods Mol. Biol. — 2011. — Vol. 693. — P. 11–36, doi: 10.1007/978-1-60761-974-1_2.
  9. Cellular contribution of bone graft to fusion / S. E. Gould, J. M. Rhee, B. K.-B. Tay [et al.[ // J. Orthop. Res. — 2000. — Vol. 18. — P. 920–927.
  10. Shinohara H. S. The musculature of the mouse-tail is char¬acterized by metameric arrangements of bicipital muscles / H. S. Shinohara // Okajimas Folia Anat. Jpn. — 1999. — Vol. 76. — P. 157–169.
  11. Pat. 2212060 Russian Federation MPC G09B23 / 28. The method of modeling fusion / Ulrich E. V., Savelyev V. I., Gubin A. B.; applicant and patenter St. Petersburg State Pediatric Medical Academy. – № 0011126977/14; appl. 28.09.2001; publ. 10.09.2003.
  12. Petrenko D. E. Substantiation of the interbody fusion experimental model in rats / D. E. Petrenko, G. V. Ivanov, A. A. Mezentsev // Bulletin of Karazin KNU. — 2012. — № 998. — P. 5–9.
  13. The morphological characteristics of the tissues in the area of interbody fusion in experimental modeling rats / D. E. Petrenko, N. A. Ashukina, G. V. Ivanov, A. A. Mezentsev // Orthopaedics, traumatology and prosthetics. – 2012. — № 4. — P. 45–49, doi: http://dx.doi.org/10.15674/0030-59872012445-49.
  14. Boden S. D. An experimental lumbar intertransverse process spinal fusion model: radiographic, histologic, and biome¬chanical healing characteristics / S. D. Boden, S. J. Hutton, W. C. Hutton // Spine. — 1995. — Vol. 20. — P. 412–420.
  15. Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a ro¬dent model / W. Zhu, B. A. Rawlins, O. Boachie-Adjei [et al.] // J. Bone Mineral. Res. — 2004. — Vol. 19. — P. 2021–2032.
  16. Video-assisted thoracoscopic surgery versus open thoracotomy for anterior thoracic spinal fusion: a comparative radiographic, biomechanical, and histologic analysis in a sheep model / B. W. Cunningham, Y. Kotani, P. S. McNulty [et al.] // Spine. — 1998. — Vol. 23. — P. 1333–1340.
  17. In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions / S. D. Cook, J. E. Dalton, E. H. Tan [et al.] // Spine. — 1994. — Vol. 19. — P. 1655–1663.
  18. Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate / S. D. Boden, G. J. Martin, M. A. Morone [et al.] // Spine. — 1999. — Vol. 24. — P. 1179–1185.
  19. Khvisyuk N. I. Instability of the lumbar spine: dis. Dr. med. Science / N. I. Khvisyuk. – Kharkiv, 1977. – 472 p.
  20. Ceramoplastic in orthopaedics and traumatology / [Korzh A. A., Gruntovsky G. Kh, Korzh N. A., Mikhailiv V. T.]. – Lviv: Svit, 1992. – P. 112.
  21. Update on bone morphogenetic proteins and their application in spine surgery / D. Samartzis, N. Khanna, F. H. Shen, H. S. An // J. Am. Coll. Surg. — 2005. — Vol. 200. — P. 236–248.
  22. Corundum ceramics – plastic material for bone / G. Kh. Gruntovsky, N. V. Dedukh, S. V. Malyshkina, V. A. Kolesnichenko // Orthopaedics, Traumatology and Prosthetics. – 1998. – № 3. – P. 22–25.
  23. Ceramoplastic of bone and joints defects (experimental testing and clinical aspects / A. A. Korzh, N. V. Dedukh, S. D. Shevchenko [et al.] // Orthopaedics, traumatology and prosthetics. – 1995. – № 1. – P. 4–10.
  24. The effect of cage stiffness on the rate of lumbar interbody fu¬sion. An in vivo model using poly(L-lactid acid) and titanium cages / M. van Dijk, T. H. Smit, S. Sugihara [et al.] // Spine. — 2002. — Vol. 27. — P. 682–688.
  25. Lotz J. C. Animal models of intervertebral disc degeneration: lessons learned / J. C. Lotz // Spine. — 2004. — Vol. 29. — P. 2742–2750.
  26. Biomechanical effect of anterior cervical spine fusion on adjacent segments / D. J. Maiman, S. Kumaresan, N. Yo¬gananda [et al.] // Biomed. Mater. Eng. — 1999. — Vol. 9, № 1. — P. 27–38.
  27. Does anterior plating of the cervikal spine predispose to adjacent segment chagts? / R. D. Rao, M. Wang, L. M. McGrady [et al.] // Spine. — 2005. — Vol. 30, № 24. — P. 2788–2792.
  28. Sarver J. J. Mechanical differences between lumbar and tail discs in the mouse / J. J. Sarver, D. M. Elliott // J. Orthop. Res. — 2005. — Vol. 23. — P. 150–155.
  29. ISSLS prize winner: a novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements / H. J. Wilke, A. Rohlmann, S. Neller [et al.] // Spine. — 2003. — Vol. 28. — P. 2585–2593.
  30. Comparison of in vivo and in vitro adjacent segment mo¬tion after lumbar fusion / M. B. Dekutoski, M. J. Schendel, J. W. Ogilvie [et al.] // Spine. — 1994. — Vol. 15 (19). –– Р. 1745–1751.
  31. Adjacent segment degeneration after lumbar spinal pos¬terolateral fusion with instrumentation in elderly patients / W. Y. Chou, C. J. Hsu, W. N. Chang, C. Wong // Arch. Orthop. Trauma Surg. — 2002. — Vol. 122 (1). — P. 39–43.
  32. Radchenko V. A. Degenerative disease of the adjacent (to operated) spine segments / V. A. Radchenko, V. I. Fedak // Ukrainian morphological collected articles. – 2010 – Vol. 8, № 2. – P. 172–175.
  33. The effect on the lumbocaral spine of long spinal fusion for idiopatic scoliosis. A minimum 10-year follow up / K. D. Luk, F. B. Lee, J. C. Leong, L. C. Hsu // Spine. — 1987. — Vol. 12. — P. 996–1000.
  34. The effect of spinal implant rigidity on vertebral bone density. A canine model / P. C. McAfee, I. D. Farey, C. E. Sutterlin [et al.] // Spine. — 1991. — Vol. 16. — P. S190–S197.
  35. Degenerative changes of adjacent segments after stabilizing operations on the spine (literature review) / V. A. Radchenko, V. I. Fedak, N. V. Dedukh, S. V. Malyshkina // Orthopaedics, traumatology and prosthetics. – 2009. – № 3. – P. 101–111, http://dx.doi.org/10.15674/0030-598720093101–111.
  36. Does plate fixation prevent disc degeneration after a lateral anulus tear? / R. J. Moore, J. M. Latham, B. Vernon-Roberts [et al.] // Spine. — 1994. — Vol. 19. — P. 2787–2790.
  37. The response of the canine intervertebral disc to immobiliza¬tion produced by spinal arthrodesis is dependent on consti¬tutional factors / T. C. Cole, P. Ghosh, J. Hannan [et al]. // J. Orthop. Res. — 1987. — Vol. 5. — P. 337–347.
  38. Magnetic resonance imaging and biological changes in injured intervertebral disc under normal and increased mechanical de-mands / J. M. Olsewski, M. J. Schendel, L. J. Wallace [et al.] // Spine. — 1996. –Vol. 21(14). — P. 1945–1951.
  39. Controlled distraction as a therapeutic option in moderate de¬generation of the intervertebral disc — an in vivo study in the rabbit-spine model / F. Unglaub, T. Guehring, G. Omlor [et al.] // Z. Orthop. Ihre Grenzgeb. — 2006. — Vol. 144. — P. 68–73.
  40. New in vivo animal model to create intervertebral disc de¬generation and to investigate effects of therapeutic strategies to stimulate disc regeneration / M. W. Kroeber, F. Unglaub, H. Wang [et al.] // Spine. — 2002. — Vol. 27. — P. 2684–2690.
  41. Effects of anterior lumbar spinal fusion on the distribution of nerve endings and mechanoreceptors in the rabbit facet joint: quantitative histological analysis / T. Onodera, Y. Shirai, M. Mi¬yamoto, Y. Genbun // J. Orthop. Sci. — 2003. — Vol. 8(4). — Р. 567–576.
  42. Histological and electrophysiological change of the para¬spinal muscle after spinal fusion: an experimental study / Y. Hu, H. Leung, W. Lu, K. Luk // Spine. — 2008. — Vol. 33(13). — Vol. 13. — P. 1418–1422, doi: 10.1097/BRS.0b013e3181753bea.
  43. Assessing the stiffness of spinal fusion in animal models / J. M. Cottrell, M. C. van der Meulen, J. M. Lane, E. R. Mey¬ers // HSS J. — 2006. — Vol. 2(1). — P. 12–18, doi: 10.1007/s11420-005-5123-7.
  44. Disc pressure changes with PMMA interspinous spinal spacer insertion for lumbar spinal stenosis / S. Y. Kwon, S. J. Moon, K. S. Lee [et al.]: Poster at the 51st Annual Meeting of the Orthopedic Research Society, 2005.
  45. Hsieh A. H. Degradation of annulus fibrosus is reduced by tension / A. H. Hsieh, T. Hadi, J. C. Lotz: Presented at the 51st Annual Meeting of the Orthopedic Research Society, 2005.
  46. Schnake K. J. Dynamic stabilization in addition to decompres¬sion for lumbar spinal stenosis with degenerative spondylo¬listhesis / K. J. Schnake, S. Scharen, B. Jeanneret // Spine. — 2006. — Vol. 31(4). — P. 442–449.
  47. Axiale distraktion beeinflusst Regenerationsprozesse mittel¬gradige degenerierter Bandscheiben / T. Guehring, G. Omlor, H. Lorenz [et al.]: Presentation at the 1st combined German Congress of Orthopedics and Traumatology, 2005.
  48. Effects of controlled dynamic disc distraction on degenerated intervertebral discs. an in vivo study on the rabbit lumbar spine model / M. Kroeber, F. Unglaub, T. Guehring [et al.] // Spine. — 2005. –Vol. 30(2). — Р. 181–187.
  49. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? / A. Kettler, L. Liakos, B. Haegele, H. J. Wilke // Eur. Spine J. — 2007. — Vol. 16. –Р. 2186–2192.
  50. Preclinical evaluation of the Dynesys posterior spinal stabiliza¬tion system: a nonhuman primate model / B. W. Cunningham, J. M. Dawson, N. Hu [et al.] // Spine J. — 2010. — Vol. 10(9). — P. 775–783, doi: 10.1016/j.spinee.2010.04.005.
  51. Application of polylacticides in spinal cages: studies in a goat model / T. H. Smit, M. R. Krijnen, M. van Dijk, P. I. Wuis¬man // J. Mater. Sci. Mater. Med. — 2006. — Vol. 17. — P. 1237–1244.
  52. Wuisman P. I. Bioresorbable polymers: heading for a new generation of spinal cages / P. I. Wuisman, T. H. Smit // Eur Spine J. — 2006. — Vol. 15(2). — P. 133–148.
  53. Middleton J. C. Synthetic biodegradable polymers as orthope¬dic devices / J. C. Middleton, A. J. Tipton // Biomaterials. — 2000. — Vol. 21. — P. 2335–2346.
  54. Comparison between anterior lumbar interbody fusion and posterolateral fusion in punctured disk model in rats / H. Ka¬moda, S. Ohtoti, G Inoue [et al]. // Global Spine J. — 2012. — Vol. 2. — P. 2, doi: 10.1055/s-0032-1319905.
  55. Bioresorbable polylactide interbody implants in an ovine anterior cervical discectomy and fusion model: three-year results / K. A. Thomas, J. M. Toth, N. R. Crawford [et al]. // Spine. — 2008. — Vol. 33(7). — P. 734–742, doi: 10.1097/BRS.0b013e3181695716.
  56. In vivo evaluation of bioresorbable polylactide implants for cervical graft containment in an ovine spinal fusion model / G. B. Cornwall, C. P. Ames, N. R. Crawford [et al.] // Neuro¬surg. Focus. — 2004. — Vol. 16(3). — E5.

How to Cite

Radchenko, V., Levshin, O., Dedukh, N., & Bengus, L. (2015). Modeling of fusion in animals (review). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 112–119. https://doi.org/10.15674/0030-598720152112-119

Issue

Section

DIGESTS AND REVIEWS