Simulation of the intervertebral disc degeneration in experimental animals (literature review)

Authors

DOI:

https://doi.org/10.15674/0030-598720151114-124

Keywords:

intervertebral disc, degeneration, experiment, animals, models

Abstract

In solving a problem of the pathogenesis and pathophysiology of intervertebral disc (IVD) degeneration definite contribution belongs to biomedical research on animals. In this regard the authors have presented an analytical overview of different ex­perimental models. We have dealt with eligible use of the study of degenerative processes in the spine of large quadrupeds, compression and relaxation of the back muscles which signifi­cantly increases the load on the spine. In case of stabilization of horizontally aligned spine of large animals (calves, sheep and pigs) this additional loading may be even greater than in humans. It was proved that the bone density of the vertebral bodies in the lumbar spine of sheep, pigs and calf is four times higher than in humans indicating a much greater strain on the lumbar spine in these animals compared with humans. There were some experi­mental works cited proving that a preferred object for modeling of degenerative spinal changes are rabbits and small laboratory animals — rats and mice. Using them one can trace the develop­ment of age-related degenerative changes in IVD in a relatively short time, and to examine changes in the cranial and caudal adjacent functional spinal units. In this article we described different methods of reproduction of degenerative changes in various spine segments of such large animals as rabbits, rats, mice. Violation of biomechanics is related to the conditions of instability or compression, and structural components — to the destruction of IVD, chemical influence, and violation of trophic in IVD. It is emphasized that actually none of the models do not reproduce the situation that arises in IVD as a result of its degen­eration. Therefore choosing the model for research one should be guided by specific objectives of the study of IVD degeneration and disorders in functional spinal unit.

References

  1. Volkov A.V. Experimental models of degenerative diseases of the intervertebral discs / A.V. Volkov // Surgery spine. - 2007. - № 4 – Р. 41-46.
  2. Modelling of degenerative changes intervertebral discs (osteochondrosis) in rabbits: macroscopic and histological study / A.B. Schechter, VA Basque, OL Zakharkina [et al.]//Biomedicine. –2009.– № 2. – S. 41-69.
  3. Pathological changes of intervertebral disc and vertebrae of the tail of rats under asymmetric static compression - distension in the experiment / V.V. Grigorovskiy, M.V. Khizhnyak, I.G. Vasilyeva [et al.] // Ukranian neyrosyrgery journal. - 2011. - №3. - P. 59-64.
  4. A biological approach to treating disc degeneration: not for today, but maybe for tomorrow / M. Alini, P. J. Roughley, J. Antoniou [et al.] // Eur Spine J. — 2002. — Vol. 11. — Р. 215–220.
  5. A comparison between bipedal and quadrupedal rats: do bipedal rats actually assume an upright posture? / A. S. Bailey, F. Adler, S. Min Lai [et al.] // Spine. — 2001. — Vol. 26. — P. E308–E313.
  6. A fibronectin fragment stimulates intervertebral disc degen¬eration in vivo / G. D. Anderson, X. Li, T. Tannoury [et al.] // Spine. — 2003. — Vol. 28. — Р. 2338–2345.
  7. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration / K. Masuda, Y. Aota, C. Muehleman [et al.] // Spine. — 2005. — Vol. 30. — Р. 5–14.
  8. A simple disc degeneration model induced by percutaneous needle puncture in the rat tail / B. Han, K. Zhu, F. C. Li [et al.] // Spine. — 2008. — Vol. 33. — Р. 1925–1934.
  9. A slowly progressive and reproducible animal model of in¬tervertebral disc degeneration characterized by MRI, X-ray, and histology / S. Sobajima, J. F. Kompel, J. S. Kim [et al.] // Spine. — 2005. — Vol. 30. — Р. 15–24.
  10. A study of the effects of bipedism and upright posture on the lumbosacral spine and paravertebral muscles of the Wistar rat / J. D. Cassidy, K. Yong-Hing, W. H. Kirkaldy-Willis [et al.] // Spine. — 1988. — Vol. 13. — P. 301–308.
  11. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects: a prospective investigation / S. D. Boden, P. R. McCowin, D. O. Davis [et al.] // J. Bone Joint Surg. — 1990. — Vol. 72-A. — P. 1178–1184.
  12. Adams M. A. What is intervertebral disc degeneration, and what causes it? / M. A. Adams, P. J. Roughley // Spine. — 2006. — Vol. 31. — Р. 2151–2161.
  13. An anatomical comparison of the human and bovine thoraco¬lumbar spine / P. C. Cotterill, J. P. Kostuik, G. D’Angelo [et al.] // Orthop. Res. — 1986. — Vol. 4. — P. 298–303.
  14. An in vivo model of degenerative disc disease / J. P. Norcross, G. E. Lester, P. Weinhold [et al.] // J. Orthop. Res. — 2003. — Vol. 21. — P. 183–188.
  15. Analysis of rabbit intervertebral disc physiology based on water metabolism. I. Factors influencing metabolism of the normal intervertebral disc / N. Hirano, H. Tsuji, H. Ohshima [et al.] // Spine. — 1988. — Vol. 13, № 11. — Р. 1291–1296.
  16. Animal models for spinal fusion / I. H. Drespe, G. K. Polzhofer, A. S. Turner, J. N. Grauer // J. Spine. — 2005. — Vol. 5, № 6. — Р. 209–216.
  17. Аngiogenesis and inflammatory cell infiltration in lumbar disc herniation / Y. Koike, M. Uzuki, S. Kokubun, T. Sawai // Spine. — 2003. — Vol. 28. — P. 1928–1933.
  18. Are animal models useful for studying human disc 110 dis¬orders/ degeneration? / M. Alini, M. S. Eisenstein, K. Ito [et al.] // Eur Spine. — 2008. — Vol. 17. — P. 2–19.
  19. Assessing the stiffness of spinal fusion in animal models / J. M. Cottrell, M. C. van der Meulen, J. M. Lane, E. R. Myers [et al.] // J. HSS. — 2006. — Vol. 2, № 1. — P. 12–18, doi: 10.1007/s11420-005-5123-7.
  20. Boden S. D. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechan¬ical healing characteristics / S. D. Boden, J. H. Schimandle, W. C. Hutton // Spine. — 1995. — Vol. 20. — P. 412–420.
  21. Bradford D. S. Chymopapain, chemonucleosis and nucleus pulposus regeneration / D. S. Bradford, K. M. Cooper, T. R. Oegema // J. Bone Joint Surg. — 1983. — Vol. 65-A. — P. 1220–1224.
  22. Cavanaugh J. M. Innervation of the rabbit lumbar intervertebral disc and posterior longitudinal ligament / J. M. Cavanaugh, S. Kallakuri, A. C. Ozaktay // Spine. — 1996. — Vol. 20, № 19. — Р. 2080–2085.
  23. CD44 expression in the developing and growing rat interverte¬bral disc / J. W. Stevens, G. L. Kurriger, A. S. Carter, J. A. May¬nard // Dev. Dyn. — 2000. — Vol. 219. — P. 381–390.
  24. Сemonucleolyric effects of chondroitinase ABC on normal rabbit intervertebral disc: course of action up to 10 days postin¬jection and minimum effective dose / T. Takahashi, H. Kuri¬hara, S. Nakajima [et al.] // Spine. — 1996. — Vol. 21. — Р. 2405–2411.
  25. Changes in nuclear composition following cyclic compres¬sion of the intervertebral disc in an in vivo rat-tail model / C. T. Ching, D. H. Chow, F. Y. Yao [et al.] // Med. Eng. Phys. — 2004. — Vol. 26. — P. 587–594.
  26. Collagen synthesis and types 1, III, IV, and VI collagens in an animal model of disc degeneration / E. Kaapa, X. Han, S. Holm [et al.] // Spine. — 1995. — Vol. 20. — P. 59–66.
  27. Collagens in the injured porcine intervertebral disc / E. Kaapa, S. Holm, X. Han [et al.] // J. Orthop. Res. — 1994. — Vol. 12. — P. 93–102.
  28. Comparative gene expression profiling of normal and degen¬erative discs: analysis of a rabbit annular laceration model / D. G. Anderson, M. W. Izzo, D. J. Hall [et al.] // Spine. — 2002. — Vol. 27. — P. 1291–1296.
  29. Compression-induced changes in intervertebral disc properties in a rat tail model / J. C. Iatridis, P. L. Mente, I. A. Stokes [et al.] // Spine. — 1999. — Vol. 24. — Р. 996–1002.
  30. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study / J. C. Lotz, O. K. Colliou, J. J. R. Chin [et al.] // Spine. — 1998. — Vol. 23. — P. 2493–2506.
  31. Computer aided vertebral visualization and analysis: a meth¬odology using the sand rat, a small animal model of disc degeneration / C. Wilson, D. Brown, K. Najarian [et al.] // BMC Musculoskelet. Disord. — 2003. — Vol. 4. — P. 4–8.
  32. Degenerative annular changes induced by puncture are as¬sociated with insufficiency of disc biomechanical function / A. H. Hsieh, D. Hwang, D. A. Ryan [et al.] // Spine. — 2009. — Vol. 34. — Р. 998–1005.
  33. Demers C. N. Value and limitations of using the bovine tail as a model for the human lumbar spine / C. N. Demers, J. Anto¬niou, F. Mwale // Spine. — 2004. — Vol. 29. — P. 2793–2799.
  34. Developing consistently reproducible intervertebral disc degeneration at rat caudal spine by using needle puncture / H. Zhang, F. La Marca, S. J. Hollister [et al.] // J. Neu¬rosurg Spine. — 2009. — Vol. 10. — Р. 522–530, doi: 10.3171/2009.2.SPINE08925.
  35. Differentiation of mesenchymal stem cells transplanted to a rabbit degeneration disc model / D. Sakai, J. Mochida, T. Wata¬nabe [et al.] // Spine. — 2005. — V. 30. — Р. 2379–2387.
  36. Disc degeneration in the rabbit: a biochemical and radiologi¬cal comparison between four disc injury models / K. S. Kim, S. T. Yoon, J. Li [et al.] // Spine. — 2005. — Vol. 30. — Р. 33–37.
  37. Distribution of the basic fibroblast growth factor and its recep¬tor gene expression in normal and degenerated rat interverte¬bral discs / T. Nagano, K. Yonenobu, S. Miyamoto S, [et al.] // Spine. — 1995. — Vol. 20. — P. 1972–1978.
  38. Does anterior plating of the cervical spine predispose to adja¬cent segment changes? / R. D. Rao, M. Wang, L. M. McGrady [et al.] // Spine. — 2005. — Vol. 30, № 24. — P. 2788–2792.
  39. Effect of chondroitinase ABC on matrix metalloproteinases and inflammatory mediators produced by intervertebral disc of rabbit in vitro / M. Sakuma, N. Fujii, T. Takahashi [et al.] // Spine. — 2002. — Vol. 27. — P. 576–580.
  40. Effect of mechanical loading on mRNA levels of common endogenous controls in articular chondrocytes and interver¬tebral disk / C. R. Lee, S. Grad, J. J. MacLean [et al.] // Anal. Biochem. — 2005. — Vol. 341. — Р. 372–375.
  41. Effect of severity of intervertebral disc injury on mesen¬chymal stem cell-based regeneration / G. Ho, V. Y. Leung, K. M. Cheung, D. Chan // Connect. Tissue Res. — 2008. — Vol. 49. — Р. 15–21, doi: 10.1080/03008200701818595.
  42. Effects of chondroitinase ABC on degenerative intervertebral discs / T. Ando, F. Kato, K. Mimatsu [et al.] // Clin. Orthop. Relat. Res. — 1995. — Vol. 318. — Р. 214–221.
  43. Effects of chondroitinase FBC on intradiscal pressure in sheep an in vivo study / M. Sasaki, T. Takahashi, K. Miyahara [et al.] // Spine. — 2001. — Vol. 26. — P. 463–468.
  44. Effects of disc degeneration at one level on the adjacent level in axial model / Y. E. Kim, V. K. Goel, J. N. Weinstein [et al.] // Spine. — 1991. — Vol. 16. — P. 331–335.
  45. Effects of immobilization and dynamic compression on in¬tervertebral disc cell gene expression in vivo / J. J. MacLean, C. R. Lee, S. Grad [et al.] // Spine. — 2003. — Vol. 28. — P. 973–981.
  46. Effects of spinal fusion on the proteoglycans of the canine intervertebral disc / T. C. Cole, D. Burkhardt, P. Ghosh [et al.] // J. Orthop. Res. — 1985. — Vol. 3. — P. 277–291.
  47. Elliott D. M. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc / D. M. Elliott, J. J. Sarver // Spine. — 2004. — Vol. 29. — P. 713–722.
  48. Evans C. Potential biologic therapies for the intervertebral disc / C. Evans // J. Bone Joint Surg. — 2006. — Vol. 88-A, № 2. — Р. 95–98.
  49. Experimental chemonucleolysis with chondroitinase ABC in monkeys / T. Sugimura, F. Kato, K. Mimatsu [et al.] // Spine. — 1996. — Vol. 21. — P. 161–165.
  50. Experimental lumbar spondylolisthesis in growing rabbits / K. Osterman, H. Osterman // Clin. Orthop. Relat. Res. — 1996. — Vol. 332. — P. 274–280.
  51. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats Brazilian / A. C. Issy, V. Cas¬tania, M. Castania [et al.] // J. Med. Biol. Res. — 2013. — Vol. 46. — Р. 683–689.
  52. Experimental model of multidirectional disc hernia in rats / A. Latorre, J. Albareda, T. Castiella [et al.] // Int. Orthop. — 1998. — Vol. 22. — Р. 44–48.
  53. Fibronectin and its fragments increase with degeneration in the human intervertebral disc / T. R. Oegema, S. L. Johnson, D. J. Aguiar, J. W. Ogilvie // Spine. — 2000. — Vol. 25. — P. 2742–2747.
  54. Four-year follow-up of poly-L-lactic Acid cages for lumbar in¬terbody fusion in goats / M. van Dijk, P. J. van Diest, T. H. Smit [et al.] // J. Long Term Eff. Med. Implants. — 2005. — Vol. 15. — P. 125–138.
  55. Haughton V. Imaging intervertebral disc degeneration / V. Haughton // J. Bone Joint Surg. — 2006. — Vol. 88-A. — Р. 15–20.
  56. Histological assessment of a novel needle puncture model: a mild, progressive intervertebral disc degeneration / C. Mue-hleman [et al.]: 49th Annual meeting of the Orthopaedic Re¬search Society. — New Orleans, 2003.
  57. Hunter C. J. The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering / C. J. Hunter, J. R. Matyas, N. A. Duncan // Tissue Eng. — 2003. — Vol. 9. — Р. 667–677.
  58. Intervertebral disc reconstitution after chemonucleolysis with chymopapain is dependent on dosage. / J. Melrose, T. K. Tay¬lor, P. Ghosh [et al.] // Spine. — 1996. — Vol. 21. — P. 9–17.
  59. Intervertebral disc tissue engineering I: characterization of the nucleus pulposus / J. C. Gan, P. Ducheyne, E. J. Vresilovic [et al.] // Clin. Orthop. Relat. Res. — 2003. — Vol. 411. — Р. 305–314.
  60. Intradiscal administration of osteogenic protein-1 increases in¬tervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits / H. S. An, K. Takegami, H. Kamada [et al.] // Spine. — 2005. — Vol. 30. — Р. 25–31.
  61. Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs/ K. Miyamoto, K. Masuda, J. G. Kim [et al.] // J. Spine. — 2006. — Vol. 6. — Р. 692–703.
  62. Is the lumbar sheep spine an adequate model for the human lumbar spine? — a comparison of biomechanical properties, macroscopic and microscopic anatomy and bone mineral den¬sity / H. J. Wilke, A. Kettler, P. Gosh, L. Claes: proceedings of the 26th annual meeting, Hawaii, 1999. — 124 p.
  63. ISSLS prize winner: a novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements / H. J. Wilke, A. Rohlmann, S. Neller [et al.] // Spine. — 2003. — Vol. 28. — P. 2585–2593.
  64. Kaigle A. M. Experimental instability in the lumbar spine / A. M. Kaigle, S. H. Holm, T. H. Hansson // Spine. — 1995. — Vol. 20. — P. 421–430.
  65. Kaigle A. M. Volvo Award winner in biomechanical studies. Kinematic behavior of the porcine lumbar spine: a chronic lesion model / A. M. Kaigle, S. H. Holm, T. H. Hansson // Spine. — 1997. — Vol. 22. — P. 2796–2806.
  66. Kim K. W. The origin of chondrocytes in the nucleus pulpous and histologic findings associated with the transition of a noto¬chordal nucleus pulposus to a fibrocartilaginous nucleus pulpo¬sus in intact rabbit intervertebral disc / K. W. Kim, T. H. Lim, J. G. Kim // Spine. — 2003. — Vol. 28. — Р. 982–990.
  67. Korecki C. L. Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model / C. L. Korecki, J. J. Costi, J. C. Iatridis // Spine. — 2008. — Vol. 33. — Р. 235–241.
  68. Lindblom K. Intervertebral disc degeneration considered as a pressure atrophy / K. Lindblom // J. Bone Joint Surg. — 1957. — Vol. 39-A. — P. 933–945.
  69. Lipson S. J. Proteoglycans in experimental intervertebral disc degeneration / S. J. Lipson, H. Muir // Spine. — 1981. — Vol. 6. — P. 194–210.
  70. Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis / J. C. Iatridis, A. J. Michalek, D. Purmessur, C. L. Korecki // Cell and Mol. Bioeng. — 2009. — № 2. — Р. 437–447.
  71. Long-term follow-up after interbody fusion of the cervical spine / J. Goffin, E. Geusens, N. Vantomme [et al.] // J. Spinal Disord. — 2004. — Vol. 17. — P. 79–85.
  72. Lotz J. C. Animal models of intervertebral disc degeneration: lessons learned / J. C. Lotz // Spine. — 2004. — Vol. 29. — Р. 2742–2750.
  73. Lotz J. C. Innervation, inflammation, and hypermobility may characterize pathologic disc degeneration: review of animal model data / J. C. Lotz, J. A. Ulrich // J. Bone Joint Surg. — 2006. — Vol. 88-А. — Р. 76–82.
  74. Magnetic resonance imaging and biological changes in injured intervertebral discs under normal and increased mechanical demands / J. M. Olsew'ski, M. J. Schendel, L. J. Wallace [et al.] // Spine. — 1996. — Vol. 21. — P. 1945–1951.
  75. Mechanical and pathologic consequences of induced concentric anular tears in an ovine model / N. L. Fazzalan, J. J. Costi, T. C. Hearn [et al.] // Spine. — 2001. — Vol. 26. — P. 2575–2581.
  76. Mechanical initiation of intervertebral disc degeneration / M. A. Adams, B. J. Freeman, H. P. Morrison [et al.] // Spine. — 2000. — Vol. 25. — P. 1625–1636.
  77. Mechanical modulation of growth for the correction of vertebral wedge deformities / P. L. Mente, D. D. Aronsson, I. A. F. Stokes, J. C. Iatridis // J. Orthop. Res. — 1999. — Vol. 17. — P. 518–524.
  78. Michalek J. L. Needle puncture injury of the rat intervertebral disc affects torsional and compressive biomechanics differ¬ently / J. L. Michalek, K. L. Funabashi, J. C. Iatridis // J. Eur Spine. — 2010. — Vol. 19 (12). — P. 2110–2116, doi: 10.1007/s00586-010-1473-z.
  79. Miyamoto S. Experimental cervical spondylosis in the mouse / S. Miyamoto, K. Yonenobu, K. Ono // Spine. — 1991. — Vol. 16. — P. S495–S500.
  80. Muschler G. F. Evaluation of bone-grafting materials in a new canine segmental spinal fusion model / G. F. Muschler, B. Huber, T. Ullman [et al.] // J. Orthop. Res. — 1993. — Vol. 11. — P. 514–524.
  81. Nerve fiber ingrowth into scar tissue formed following nucleus pulposus extrusion in the rab, bit anularpuncture disc degenera¬tion model: effects of depth of p uncture / Y. Aoki, K. Akeda, H. An [et al.] // Spine. — 2006. — Vol. 31. — Р. E774–E780.
  82. New in vivo animal model to create inrervertebral disc degen¬eration and to investigate the effects of therapeutic strategies to stimulate disc regeneration / M. W. Kroeber, F. Unglaub, H. Wang [et al.] // Spine. — 2002. — Vol. 27. — P. 2684–2690.
  83. New small animal model for the study of spine fusion in the sand rat: pilot studies / H. E. Gruber, B. Gordon, C. Williams [et al.] // Lab. Anim. — 2009. — Vol. 43. — P. 272–277, doi: 10.1258/la.2008.008055.
  84. O’Connell G. D. Comparison of animals used in disc research to human lumbar disc geometry / G. D. O’Connell, E. J. Vresi¬lovic, D. M. Elliott // Spine. — 2007. — Vol. 32. — P. 328–333.
  85. Osteoarthrosis of the facet joints resulting from anular rim lesions in sheep lumbar discs / R. J. Moore, T. N. Crotti, O. L. Osti [et al.] // Spine. — 1999. — Vol. 24. — P. 519–525.
  86. Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rab¬bit anular puncture model / K. Masuda, Y. Imai, M. Okuma [et al.] // Spine. — 2006. — Vol. 31. — Р. 742–754.
  87. Osti O. Annulus tears and intervertebral disc degeneration / O. Osti, B. Vernon-Roberts, R. Fraser // Spine. — 1990. — Vol. 15. — P. 762–767.
  88. Palmer E. L. The time dependent role of cytokines in mechani¬cally induced intervertebral disc degeneration / E. L. Palmer, J. C. Lotz: Transactions of the 50th Annual meeting of the Orthopaedic Research Society. — San Francisco, 2004.
  89. Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy/ S. C. W. Chan, A. Burki, H. M. Bonel [et al.] // Spine J. — 2013. — Vol. 13. — P. 273–283.
  90. Park J. S. The effect of chondroitinase ABC on rabbit interver¬tebral disc: radiological, histological and electron microscopic findings / J. S. Park, J. I. Ahn // Int. Orthop. — 1995. — Vol. 19. — P. 103–109.
  91. Pazzaglia U. E. The effects of mechanical forces on bones and joints. Experimental study on the rat tail / U. E. Pazzaglia, L. Andrini, A. Di Nucci // J. Bone Joint Surg. — 1997. — Vol. 79-В. — P. 1024–1030.
  92. Phillips F. M. Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model / F. M. Phillips, J. Resident; F. T. Wetzel // J. Bone Joint Surg. — 2002. — Vol 84-B. — P. 289–294.
  93. Poiraudeau S. Phenotypic characteristics of rabbit interverte¬bral disc cells. Comparison with cartilage cells from the same animal / S. Poiraudeau, I. Monteiro, P. Anract // Spine. — 1999. — Vol. 24. — Р. 837–844.
  94. Rabbit model for in vivo study of intervertebral disc degenera¬tion and regeneration / Min Ho Kong, Duc H. Do, M. Miyazaki [et al.] // J. Korean Neurosurg. Soc. — 2008. — Р. 327–333.
  95. Radiological and MRI analyses of a novel rabbit model: a mild, progressive disc degeneration / Y. Aota [et al.]: 48th Annual meet¬ing of the Orthopaedic Research Society, Dallas, TX., 2002.
  96. Sandhu H. S. Animal models for preclinical assessment of bone morphogenetic proteins in the spine / H. S. Sandhu, S. N. Khan // Spine. — 2002. — Vol. 27, Suppl. 1. — Р. 32–38.
  97. Sarver J. J. Mechanical differences between lumbar and tail discs in the mouse / J. J. Sarver, D. M. Elliott // J. Orthop. Res. — 2005. — Vol. 23. — P. 150–155.
  98. Spatial and temporal localization of transforming growth factor-beta, fibroblast growth factor-2, and osteonectin, and identification of cells expressing alpha-smooth muscle actin in the injured anulus fibrosus: implications for extracellular matrix repair / J. Melrose, S. Smith, C. B. Little [et al.] // Spine. — 2002. — Vol. 27. — P. 1756–1764.
  99. Spinal flexibility increase after chymopapain injection in dose dependent: a possible alternative to anterior release in scoliosis / D. S. Lu, K. D. Luk, W. W. Lu, [et al.] // Spine. — 2004. — Vol. 29. — Р. 123–128.
  100. Stokes I. A. Experimental instability in the rabbit lumbar spine / I. A. Srokes, D. F. Counts, J. W. Frymoyer // Spine. — 1989. — Vol. 14. — P. 68–72.
  101. Stokes I. A. Mechanical conditions that accelerate interver¬tebral disc degeneration: overload versus immobilization / I. A. Stokes, J. C. Iatridis // Spine. — 2004. — Vol. 29. — P. 2724–2732.
  102. The dose-related effect of intradiscal chymopapain on rabbit intervertebral discs / D. P. Keister, J. M. Williams, G. B. An¬dersson [et al.] // Spine. — 1994. — Vol. 19. — P. 747–751.
  103. The effect of relative needle diameter in puncture and sham injection animal models of degeneration / D. M. Elliott, C. S. Yerramalli, J.C. Beckstein [et al.] // Spine. — 2008. — Vol. 33. — Р. 588–596, doi: 10.1097/BRS.0b013e318166e0a2.
  104. The effect of static in vivo bending on the murine interverte¬bral disc / C. Conrt, O. K. Colliou, J. R. Chin [et al.] // Spine J. — 2001. — Vol. 1(4). — P. 239–245.
  105. The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc / K. Ariga, S. Miyamoto, T. Nakase [et al.] // Spine. — 2001. — Vol. 26. — P. 2414–2420.
  106. The relationship between cartilage end-plate calcification and disc degeneration: an experimental study / B. G. Peng, S. X. Hou, Q. Shi, L. S. Jia // J. Chin Med. — 2001. — Vol. 114. — P. 308–312.
  107. The response of the canine intervertebral disc to immobiliza¬tion produced by spinal arthrodesis is dependent on constitu¬tional factors. / T. C. Cole, P. Ghosh, N. J. Hannan [et al.] // J. Orthop. Res. — 1987. — Vol. 5. — P. 337–347.
  108. The use of coccygeal discs to study intervertebral disc me¬tabolism/ H. Oshima, H. Ishihara, J. P. Urban, H. Tsuji // J. Orthop. Res. — 1993. — Vol. 11. — P. 332–338.
  109. Thometz J. G. Three-dimensional rotations of the thoracic spine after distraction with and without rib resection: a kinematic evaluation of the apical vertebra in rabbits with induced scolio¬sis / J. G. Thometz, X. C. Liu, R. Lyon // J. Spinal Disord. — 2000. — Vol. 13. — P. 108–112.
  110. Torsional injury resulting in disc degeneration: I. An in vivo rabbit model / A. G. Hadjipavlou, J. W. Simmons, J. P. Yang [et al.] // J. Spinal Disord. — 1998. — Vol. 11. — P. 312–317.
  111. Turner A. S. The sheep as a model for osteoporosis in humans / A. S. Turner // J. Vet — 2002. — Vol. 163. — P. 232–239.
  112. Validation of the sheep as a large animal model for the study of vertebral osteoporosis / M. R. Zarrinkalam, H. Beard, C. G. Schultz, R. J. Moore // J. Eur Spine. — 2009. — Vol. 18. — P. 244–253, doi: 10.1007/s00586-008-0813-8.
  113. Walsh A. J. Biological response of the intervertebral disc to dynamic loading / A. J. Walsh, J. C. Lotz. // J. Biomech. — 2004. — Vol. 37. — P. 329–337.
  114. Wilke H. J. Are sheep spines a valid biomechanical model for human spines? / H. J. Wilke, A. Kettler, L. E. Claes // Spine. — 1997. — Vol. 22. — P. 2365–2374.
  115. Yamada K. Investigation of the short-term effect of chemo¬nucleolysis with chondroitinase ABC / K. Yamada // J. Vet. Med. Sci. — 2001. — Vol. 63. — P. 521–525.

How to Cite

Malyshkina, S., Dedukh, N., Levshin, O., & Kosterin, S. (2015). Simulation of the intervertebral disc degeneration in experimental animals (literature review). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1), 114–124. https://doi.org/10.15674/0030-598720151114-124

Issue

Section

DIGESTS AND REVIEWS