Numerical modeling and analysis of the stress-strain state in the kinematic chain «lumbar spine – sacrum – pelvis»in view of the major ligaments of the sacroiliac joint

Authors

  • Volodymyr Staude
  • Andrey Kondratyev
  • Mykhaylo Karpinsky

DOI:

https://doi.org/10.15674/0030-59872015134-41

Keywords:

sacroiliac joint, lumbar spine, sacrum, ligaments

Abstract

Objective:  To  study  the  stress-strain  state  of  the  ligaments  of the  sacroiliac  joint  and  the  elements  of  the  lumbosacral  spine considering various options of the lumbar lordosis and an angle of inclination of the cranial surface of the sacrum. Methods: mathematical modeling using the finite element method. A model «lumbar spine – the sacroiliac joints – pelvis»with major ligaments (anterior sacroiliac, interosseous sacroiliac, posterior sacroiliac, sacrotuberous, sacrospinous) was built on the base of CT and MRI scans (20 and 10 patients, respectively). Results: there were revealed that anterior sacroiliac, interosseous sacroiliac, posterior sacroiliac, sacrotuberous, sacrospinous ligaments significantly restrict rotational movement in the sacroiliac joint conditions for all variants  of  inclination  angle  of  the  sacrum and reduce strain and movement of all the elements of «lumbar spine – sacrum – pelvis»due to load redistribution. In case of physiological angle of inclination of the sacrum and physiological lordosis there were found uniform tension stress distribution of stress in all ligaments. With increasing of loads tension stresses significantly increased in iliolumbar ligaments indicating their important role in the redistribution of stress under conditions of  physiological  angle  of  inclination  of  the  sacrum  and  physiological lordosis in case of growth of the vertical load. In case of the vertical position of the sacrum and smoothed lordosis for all options of loading maximum value of tension stresses were found in the cranial and caudal part of the anterior sacroiliac ligaments and iliolumbar ligaments. A similar pattern was kept in case of increasing of load. When horizontal position of sacrum and hyperlordosis maximum value of tension stresses were found in the cranial part of the ventral and dorsal sacroiliac ligaments as well as in the iliolumbar and interosseous sacroiliac ligaments.

References

  1. Schwarzer A. C. The sacroiliac joint in chronic low back pain / A. C. Schwarzer, C. N. Aprill, N. Bogduk / Spine. — 1995. — Vol. 20(1). — P. 31–37.
  2. Maigne J. Y. Results of sacroiliac joint double block and value of sacroiliac pain provocation tests in 54 patients with low back pain / J. Y. Maigne, A. Aivaliklis, F. Pfefer / Spine. — 1996. — Vol. 21(16). — P. 1889–1892.
  3. The value of medical history and physical examination in diag¬nosing sacroiliac joint pain / P. Dreyfuss, M. Michaelson, K. Pau¬za [et al.] / Spine. — 1996. — Vol. 21(22). — P. 2594–2602.
  4. Laslett M. Diagnosing painfull sacroiliac joints: a validity study of a McKenzie evaluation and sacroiliac provocation tests / S. B. Young, C. N. Aprill, B. McDonald / Aust. J. Physiother. — 2003. — Vol. 49(2). — P. 89–97.
  5. Vleeming A. Mobility of the sacroilac joint in the elderly: A kinetic and radiology study / A. Vleeming, J. P. Van Wing¬erden, P. Dijkstra // Clin. Biomech. — 1991. — Vol. 6. — P. 161–168.
  6. Kutcenko V.A. Lumbar spondilolisthesis (pathogenesis, diagnosis, prognostication and treatment): M.P. dissertation – Kharkov, 2009.-555 p.
  7. Istomin A.G. Pelvic stability restoration after sacro-iliac joints injury and diseases: M.P. dissertation - Kharkov, 2001 – 309 p.
  8. Biomechanical analysis of reducing sacroiliac joint shear load by optimization of pelvic muscle and ligament forces / J. J. Pel, C. W. Spoor, A. L. Pool-Goudzwaard [et al.] // Ann. Biomed. Eng. — 2008. — Vol. 36(3). — P. 415–424, doi: 10.1007/s10439-007-9385-8.
  9. Staude V.A. Numerical simulation and analysis of the stress-strain state of sacro-iliac joint in different variants of lumbar lordisis / Staude V.A., Kondratyev A.V., Karpinsky M. Yul./ Orthopedics, Travmatology and prosthetics – 2012.- N2.- P. 50 – 56.
  10. Kapandzhy A.I. Spine. Joint fixation. Mechanic schemes of human body with comments. / A.I. Kapandzhy/ 6 – th edition.- M.”Aksmo”, 2009,- P. 334.
  11. Berezovsky V.A. Biophysical characteristics human tissues: reference book /Berezovsky V.A., Kolotilov N.N./ K.: Naukova dumka, 1990.-224 p.
  12. Finite element methods in spine biomechanics research / L. G. Gilbertson, V. K. Goel, W. Z. Kong, J. D. Clausen // Crit. Rev. Biomed Eng. — 1995. — Vol. 23(5–6). — P. 411–473.
  13. Anatomical and biomechanical analysis of the unique and consistent locations of sacral insufficiency fractures / N. J. Sinstrom, J. E. Heiserman, K. E. Kortman [et al.] / Spine. — 2009. — Vol. 34(4). — P. 309–315, doi: 10.1097/BRS.0b013e318191ea01.
  14. Alyamovsky A.A. Solid Works/COSMOS Works. Engineering analysis by finit element method /A.A. Alyamovsky.- M: DMK Press, 2004.- 432 p.

How to Cite

Staude, V., Kondratyev, A., & Karpinsky, M. (2015). Numerical modeling and analysis of the stress-strain state in the kinematic chain «lumbar spine – sacrum – pelvis»in view of the major ligaments of the sacroiliac joint. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1), 34–41. https://doi.org/10.15674/0030-59872015134-41

Issue

Section

ORIGINAL ARTICLES