THE INFLUENCE OF THE CULTURE OF FIBROBLASTIC CELL ELEMENTS ON THE INDICATORS OF THE METABOLISM OF CONNECTIVE TISSUE IN EXPERIMENTAL ANIMALS

Authors

DOI:

https://doi.org/10.15674/0030-59872024365-69

Keywords:

Сollagenase, hydroxyproline, glycosaminoglycans, fibroblasts, tendon damage

Abstract

The number of patients with degenerative tendon disease affects millions of people both among athletes and the general population, causing significant socio-economic consequences. Despite the availability of various methods of conservative and surgical treatment, more than a third of patients experience constant pain. Objective. To study the indicators of the metabolism of connective tissue in animals with a model of degenerative damage to tendons against the background of the introduction of a culture of fibroblastic cell elements. Methods. Therefore, the development of methods for restoring the structure of tendons using cell cultures, in particular fibroblasts, will allow to optimize the course of reparative processes, reduce the risk of complications during surgical intervention and accelerate healing, and at the molecular level — to improve the structure of collagen fibers. Laboratory studies of biochemical markers of a tendon with a degenerative-dystrophic lesion and against the background of the introduction of cell culture can help in the differential diagnosis of its extracellular matrix. Results. The experimental data obtained by us indicate the presence of differences in the biochemical markers of tendons with degenerative-dystrophic lesions in rats 7, 21, and 45 days after the introduction of culture of fibroblastic cell elements. However, 45 days after the introduction of the culture of fibroblast cell elements, the normalization of metabolic processes in the extracellular matrix of connective tissue occurs, namely, the activity of collagenase and the concentration of protein-bound hydroxyproline approaches normal values. This indicates the predominance of the synthetic phase over the catabolic one in collagen metabolism. Conclusions. In this context, the introduction of culture of fibroblastic cell elements, as an alternative anti-inflammatory method, may provide another potential opportunity in the treatment of chronic degenerative-dystrophic lesions of the Achilles tendon.

Author Biographies

Sadrudin Magomedov, «Institute of Traumatology and Orthopedics of the National Academy of Sciences of Ukraine», Kyiv

MD, Prof.

Yurii Polyachenko, «Institute of Traumatology and Orthopedics of the National Academy of Sciences of Ukraine», Kyiv

MD, Prof.

Оlexandr Kostrub, «Institute of Traumatology and Orthopedics of the National Academy of Sciences of Ukraine», Kyiv

MD, Prof. in Traumatology and Orthopaedics

Roman Blonskyi, «Institute of Traumatology and Orthopedics of the National Academy of Sciences of Ukraine», Kyiv

MD, DSci in Orthopaedics and Traumatology

Ivan Zasadnyuk, «Institute of Traumatology and Orthopedics of the National Academy of Sciences of Ukraine», Kyiv

MD, PhD in Orthopaedics and Traumatology

References

  1. Abat, F., Alfredson, H., Cucchiarini, M., Madry, H., Marmotti, A., Mouton, C., Oliveira, J. M., Pereira, H., Peretti, G. M., Spang, C., Stephen, J., Van Bergen, C. J., & De Girolamo, L. (2018). Current trends in tendinopathy: Consensus of the ESSKA basic science committee. Part II: treatment options. Journal of Experimental Orthopaedics, 5(1). https://doi.org/10.1186/s40634-018-0145-5
  2. Winnicki, K., Ochała Kłos, A., Rutowicz, B., Pękala, P. A., & Tomaszewski, K. A. (2020). Functional anatomy, histology and biomechanics of the human Achilles tendon — A comprehensive review. Annals of Anatomy — Anatomischer Anzeiger, 229, 151461. https://doi.org/10.1016/j.aanat.2020.151461.
  3. Tognoloni, A., Bartolini, D., Pepe, M., Di Meo, A., Porcellato, I., Guidoni, K., Galli, F., & Chiaradia, E. (2023). Platelets rich plasma increases antioxidant defenses of Tenocytes via Nrf2 signal pathway. International Journal of Molecular Sciences, 24(17), 13299. https://doi.org/10.3390/ijms241713299
  4. Ding, L., Wang, M., Qin, S., & Xu, L. (2021). The roles of MicroRNAs in tendon healing and regeneration. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.687117
  5. Abbasi, S., Sinha, S., Labit, E., Rosin, N. L., Yoon, G., Rahmani, W., Jaffer, A., Sharma, N., Hagner, A., Shah, P., Arora, R., Yoon, J., Islam, A., Uchida, A., Chang, C. K., Stratton, J. A., Scott, R. W., Rossi, F. M., Underhill, T. M., … Biernaskie, J. (2021). Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell, 28(3), 581–583. https://doi.org/10.1016/j.stem.2021.02.004
  6. Buechler, M. B., Pradhan, R. N., Krishnamurty, A. T., Cox, C., Calviello, A. K., Wang, A. W., Yang, Y. A., Tam, L., Caothien, R., Roose Girma, M., Modrusan, Z., Arron, J. R., Bourgon, R., Müller, S., & Turley, S. J. (2021). Cross-tissue organization of the fibroblast lineage. Nature, 593(7860), 575-579. https://doi.org/10.1038/s41586-021-03549-5
  7. Guerrero Juarez, C. F., Dedhia, P. H., Jin, S., Ruiz Vega, R., Ma, D., Liu, Y., Yamaga, K., Shestova, O., Gay, D. L., Yang, Z., Kessenbrock, K., Nie, Q., Pear, W. S., Cotsarelis, G., & Plikus, M. V. (2019). Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nature Communications, 10(1). https://doi.org/10.1038/s41467-018-08247-x.
  8. Gaut, L., & Duprez, D. (2015). Tendon development and diseases. WIREs Developmental Biology, 5(1), 5–23. https://doi.org/10.1002/wdev.201
  9. Klatte-Schulz, F., Minkwitz, S., Schmock, A., Bormann, N., Kurtoglu, A., Tsitsilonis, S., Manegold, S., & Wildemann, B. (2018). Different Achilles tendon pathologies show distinct histological and molecular characteristics. International Journal of Molecular Sciences, 19(2), 404. https://doi.org/10.3390/ijms19020404
  10. Mendias, C. L., Schwartz, A. J., Grekin, J. A., Gumucio, J. P., & Sugg, K. B. (2017). Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy. Journal of Applied Physiology, 122(3), 571–579. https://doi.org/10.1152/japplphysiol.00719.2016
  11. №. 29468. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Concluded at Strasbourg on 18 March 1986. (2000). United Nations Treaty Series, 610–610. https://doi.org/10.18356/
  12. Kostrub, O. O., Brusko, A. T., Blonsky, R. I., & Zayets, V. B. (2009). Model of degenerative-dystrophic tendon damage (experimental study). Herald of orthopedics, traumatology and prosthetics, (3), 26–28. (in Ukrainian)
  13. Abrafikova, L. G., Petrenko, T. F., Vysekantsev, I. P., & Hryshchenko, V. I. (2010). The influence of native and cryopreserved allofibroblasts on the regeneration processes of skin ulcers in rats. Zaporizhia Medical Journal, 12(2), 5–8. (in Ukrainian)
  14. Lindy, S., Halme, J., Turto, H., Rokkanen, P., Vainio, K., & Wegelius, O. (1973). Collagenolytic activity in rheumatoid synovial tissue. Clinica Chimica Acta, 47(2), 153–157. https://doi.org/10.1016/0009-8981(73)90310-0
  15. Frey, J. (1965). Etude d'une méthode d'exploration et du taux normal de l'hydroxyproline du serum. Biochimica et Biophysica Acta (BBA) — General Subjects, 111(2), 440–446. https://doi.org/10.1016/0304-4165(65)90054-1
  16. Stegemann, H. J. (1952). A simple procedure for the determination of hydroxyproline in urine and bone. Biochem Med, 13(1), 23–30.
  17. Klyatskin, S. A., & Lifshchyts, R. I. (1989). The method of determination of glycosaminoglycans by the Orcin method in the blood of patients. Laboratory case, (10), 51–53. (in Ukrainian)
  18. Hudgens, J. L., Sugg, K. B., Grekin, J. A., Gumucio, J. P., Bedi, A., & Mendias, C. L. (2016). Platelet-rich plasma activates proinflammatory signaling pathways and induces oxidative stress in tendon fibroblasts. The American Journal of Sports Medicine, 44(8), 1931–1940. https://doi.org/10.1177/0363546516637176

How to Cite

Magomedov, S., Polyachenko, Y. ., Kostrub О. ., Blonskyi, R. ., & Zasadnyuk, I. . (2024). THE INFLUENCE OF THE CULTURE OF FIBROBLASTIC CELL ELEMENTS ON THE INDICATORS OF THE METABOLISM OF CONNECTIVE TISSUE IN EXPERIMENTAL ANIMALS. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3), 65–69. https://doi.org/10.15674/0030-59872024365-69

Issue

Section

ORIGINAL ARTICLES