Modern Technologies for Bone Defect Replacement (Literature Review)

Authors

  • Oleksandr Buryanov Bogomolets National medical university, Kyiv. Ukraine, Ukraine https://orcid.org/0000-0002-2174-1882
  • Volodymyr Kvasha Bogomolets National Medical University, Kyiv. Ukraine, Ukraine https://orcid.org/0000-0002-7444-6289
  • Valentyn Kuprii SSI «Center for innovative medical technologies of the national academy of sciences of Ukraine», Kyiv, Ukraine
  • Yuriy Sobolevskiy Bogomolets National medical university, Kyiv. Ukraine, Ukraine https://orcid.org/0000-0002-8690-8620
  • Volodymyr Chornyi Bogomolets National Medical University, Kyiv. Ukraine, Ukraine
  • Heorrhii Hliba Bogomolets National Medical University, Kyiv. Ukraine, Ukraine
  • Valentyn Rohozynskyi National military medical clinical centre «Main military clinical hospital», Kyiv. Ukraine, Ukraine

DOI:

https://doi.org/10.15674/0030-59872024179-88

Keywords:

Кісткові дефекти, аутотрансплантат, алотрансплантат, метод Ілізарова, метод Masquelet, біокомпозитні матеріали

Abstract

Information is provided regarding the materials used to replace bone defects caused by gunshot wounds. Materials and various
techniques for replacing bone defects of the limbs are described. Goal. Conduct an analysis of surgical technologies and materials for the replacement of bone defects, by analyzing literary sources. Methods. In three reputable databases (PubMed, Scopus, and Web of Science), an analysis of the latest scientific studies devoted to the treatment of defects of long tubular bones in the period from 2015 to 2022 was carried out. The search was carried out using the keywords "bone defects", "autograft", "allograft", "Ilizarov method", "Masquelet method", "biocomposite materials". The results. Analysis of osteoinductive and osteoconductive properties of auto- and allografts, modern biocomposite materials. Established advantages and disadvantages. The contemporary analysis of literary sources does not provide an objective comparative assessment of the effectiveness of the treatment of bone defects according to the Masquelet and Ilizarov method due to the lack of a sufficient number of randomized studies, which is the basis for further targeted research. Conclusions. Treatment of bone tissue defects of various genesis is an urgent problem of modern orthopedics and traumatology. The wide range of treatment options is proof that no single strategy works for every patient, just as there is no perfect universal material to fill and ensure bone regeneration in the defect site. A promising direction is the search for new or a combination of known materials and methods, which are able to maximally provide compensation for these pathological conditions.

Author Biographies

Oleksandr Buryanov, Bogomolets National medical university, Kyiv. Ukraine

MD, Prof. in Traumatology and Orthopaedics

Volodymyr Kvasha, Bogomolets National Medical University, Kyiv. Ukraine

MD, Prof. in Traumatology and Orthopaedics

Valentyn Kuprii, SSI «Center for innovative medical technologies of the national academy of sciences of Ukraine», Kyiv

MD

Yuriy Sobolevskiy, Bogomolets National medical university, Kyiv. Ukraine

MD, PhD

Volodymyr Chornyi, Bogomolets National Medical University, Kyiv. Ukraine

MD, PhD

Valentyn Rohozynskyi, National military medical clinical centre «Main military clinical hospital», Kyiv. Ukraine

MD, PhD

References

  1. El-Rashidy, A. A., Roether, J. A., Harhaus, L., Kneser, U., & Boccaccini, A. R. (2017). Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomaterialia, 62, 1-28. https://doi.org/10.1016/j.actbio.2017.08.030
  2. Nauth, A., Schemitsch, E., Norris, B., Nollin, Z., & Watson,J. T. (2018). Critical-size bone defects: Is there a consensus for diagnosis and treatment? Journal of Orthopaedic Trauma, 32(3), S7-S11. https://doi.org/10.1097/bot.0000000000001115
  3. Omar, M., Zeckey, C., Krettek, C., & Graulich, T. (2021). Offene Frakturen. Der Unfallchirurg, 124(8), 651-665. https://doi.org/10.1007/s00113-021-01042-2
  4. Mathieu, L., Bilichtin, E., Durand, M., De l’Escalopier, N., Murison, J. C., Collombet, J., & Rigal, S. (2019). Masquelet technique for open tibia fractures in a military setting. European Journal of Trauma and Emergency Surgery, 46(5), 1099-1105. https://doi.org/10.1007/s00068-019-01217-y
  5. Hoencamp, R., Vermetten, E., Tan, E. C., Putter, H., Leenen,L.P.,& Hamming, J. F. (2014). Systematic review of the prevalence and characteristics of battle casualties from NATO coalition forces in Iraq and Afghanistan. Injury, 45(7), 1028-1034. https://doi.org/10.1016/j.injury.2014.02.012
  6. Korol, S. (2021). Cyst plasty in the system of specialized treatment of wounded ends due to combat injuries. TRAUMA, 19(1), 20-26. https://doi.org/10.22141/1608-1706.1.19.2018.126659. (in Ukrainian)
  7. Burianov, O., Yarmoliuk, Y., Derkach, S., Gritsai, M., Klapchuk, Y., Los, D., Omelchenko, T., & Kolov, G. (2023). Criteria for predicting risks in the case of replacing an external fixator with an internal fixator during the treatment of gunshot fractures of the extremities. ORTHOPAEDICS, TRAUMATOLOGY and PROSTHETICS, (1), 5-9. https://doi.org/10.15674/0030-5987202315-9
  8. Shores, J., Brandacher, G., & Lee, W. (2018). From auto- to Allotransplantation: Immunomodulatory protocol for hand and arm transplantation. Journal of Reconstructive Microsurgery, 34(09), 683-684. https://doi.org/10.1055/s-0038-1651524
  9. Villarreal-Villarreal, G. A., Simental-Mendía, M., Alonso, A. A., Vilchez-Cavazos, F., Acosta-Olivo, C. A., & Peña-Martínez,V.M. (2023). Comparison of anterior iliac crest versus proximal tibia autologous bone Graft harvesting: A systematic review and meta-analysis. The Journal of Foot and Ankle Surgery, 62(2),388-397. https://doi.org/10.1053/j.jfas.2022.10.004
  10. Wang, Z., Zhu, Y., Deng, X., Xin Xing, Tian, S., Fu, L., Yan, X., Chen, W., Hou, Z., & Zhang, Y. (2021). Structural Bicortical autologous iliac crest bone Graft combined with the tunnel bone tamping method for the depressed tibial plateau fractures. BioMed Research International, 2021, 1-10. https://doi.org/10.1155/2021/1249734
  11. Tow, A. P. (2022). Autotransplantation: a lost art worthy of revival in the era of implants. General dentistry, 70(4), 28-32.
  12. https://doi.org/10.56569/UDJ.1.1.2022.5-19
  13. Petrella, G., Tosi, D., Pantaleoni, F., & Adani, R. (2021). Vascularized bone grafts for post-traumatic defects in the upper extremity. Archives of Plastic Surgery, 48(01), 84-90. https://doi.org/10.5999/aps.2020.00969
  14. Shi, L. L., Garg, R., Jawa, A., Wang, Q., Chai, Y., Zeng,B.,& Jupiter,J. B. (2020). BONY hypertrophy in vascularized fibular grafts. HAND, 17(1), 106-113. https://doi.org/10.1177/1558944719895784
  15. Boghossian, E., & Stewart, D. A. (2021). The medial Metaphyseal periosteal artery (MMPA): An alternate pedicle for the medial femoral trochlea flap. The Journal of Hand Surgery, 46(11), 1032.e1-1032.e3. https://doi.org/10.1016/j.jhsa.2020.11.012
  16. Hill, J. R., Heckmann, N., McKnight, B., White, E. A., Ghiassi, A., & Patel, B. A. (2020). Medial femoral trochlea Osteochondral Graft: A quantitative anatomic comparison to the proximal pole of the scaphoid. Journal of Wrist Surgery, 09(04), 283-288. https://doi.org/10.1055/s-0040-1708862
  17. Rupp, M., Klute, L., Baertl, S., Walter, N., Mannala, G., Frank, L., Pfeifer, C., Alt, V., & Kerschbaum, M. (2021). The clinical use of bone Graft substitutes in orthopedic surgery in Germany — A 10-years survey from 2008 to 2018 of 1,090,167 surgical interventions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110(2), 350-357. https://doi.org/10.1002/jbm.b.34911
  18. Ahmed, N., Eras, V., Pruß, A., Perka, C., Brune, J., & VuHan, T. (2022). Allografts: Expanding the surgeon’s armamentarium. Cell and Tissue Banking, 24(1), 273-283. https://doi.org/10.1007/s10561-022-10015-7
  19. Aurich, M., & Hofmann, G. O. (2020). Fixation of displaced avulsion fracture of the anterior superior iliac spine (ASIS) after bone Graft harvesting using anatomic low-profile locking plate: Case report and surgical technique. Zeitschrift für Orthopädie und Unfallchirurgie, 159(06), 681-686. https://doi.org/10.1055/a-1192-7544
  20. Ielo, I., Calabrese, G., De Luca, G., & Conoci, S. (2022). Recent advances in hydroxyapatite-based Biocomposites for bone tissue regeneration in orthopedics. International Journal of Molecular Sciences, 23(17), 9721. https://doi.org/10.3390/ijms23179721
  21. Lobb, D. C., DeGeorge, B. R., & Chhabra, A. B. (2019). Bone Graft substitutes: Current concepts and future expectations. The Journal of Hand Surgery, 44(6), 497-505.e2. https://doi.org/10.1016/j.jhsa.2018.10.032
  22. Bohner, M., Santoni, B. L., & Döbelin, N. (2020). β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomaterialia, 113, 23-41. https://doi.org/10.1016/j.actbio.2020.06.022
  23. Kim, S., Baril, C., Rudraraju, S., & Ploeg, H. (2021). Influence of porosity on fracture toughness and fracture behavior of antibiotic-loaded PMMA bone cement. Journal of Biomechanical Engineering, 144(1). https://doi.org/10.1115/1.4051848
  24. Hench, L. L. (2013). Chronology of Bioactive glass development and clinical applications. New Journal of Glass and Ceramics, 03(02), 67-73. https://doi.org/10.4236/njgc.2013.32011
  25. Kargozar, S., Montazerian, M., Fiume, E., & Baino, F. (2019). Multiple and promising applications of strontium (sr)-containing Bioactive glasses in bone tissue engineering. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00161
  26. Ayoub, A., & Gillgrass, T. (2019). The clinical application of recombinant human bone morphogenetic protein 7 for reconstruction of alveolar cleft: 10 years' follow-up. Journal of Oral and Maxillofacial Surgery, 77(3), 571-581. https://doi.org/10.1016/j.joms.2018.08.031
  27. Bai, Y., Moeinzadeh, S., Kim, S., Park, Y., Lui, E., Tan, H., Zhao, W., Zhou, X., & Yang, Y. P. (2020). Development of PLGA-PEG-COOH and gelatin-based Microparticles dual delivery system and E-beam sterilization effects for controlled release of BMP-2 and IGF-1. Particle & Particle Systems Characterization, 37(10). https://doi.org/10.1002/ppsc.202000180
  28. Issaoui, H., Fekhaoui, M. R., Jamous, M., & Masquelet, A. (2021). Modified Masquelet technique using Allogeneic Graft for a Gustilo-Anderson type III-A open fracture of the femur with an 8 cm bone defect. Case Reports in Orthopedics, 2021, 1-7. https://doi.org/10.1155/2021/8829158
  29. Masquelet, A. C., & Giannoudis, P. V. (2021). The induced membrane technique for treatment of bone defects: What have I learned? Trauma Case Reports, 36, 100556. https://doi.org/10.1016/j.tcr.2021.100556
  30. Tetsworth, K., Paley, D., Sen, C., Jaffe, M., Maar, D. C., Glatt, V., Hohmann, E., & Herzenberg, J. E. (2017). Bone transport versus acute shortening for the management of infected tibial non-unions with bone defects. Injury, 48(10), 2276-2284. https://doi.org/10.1016/j.injury.2017.07.018
  31. Liu, Y., Yushan, M., Liu, Z., Liu, J., Ma, C., & Yusufu, A. (2020). Complications of bone transport technique using the Ilizarov method in the lower extremity: A retrospective analysis of 282 consecutive cases over 10 years. BMC Musculoskeletal Disorders, 21(1). https://doi.org/10.1186/s12891-020-03335-w
  32. Li, M., Xiao, X., Fan, J., Lu, Y., Chen, G., Huang, M., Ji, C., Wang, Z., & Li, J. (2021). Is the Capanna technique a reliable method for revision surgery after failure of previous limb-salvage surgery? Annals of Surgical Oncology, 29(2), 1122-1129. https://doi.org/10.1245/s10434-021-10506-z
  33. Boehm, K. S., Al-Taha, M., Morzycki, A., Samargandi, O. A., Al-Youha, S., & LeBlanc, M. R. (2018). Donor site morbidities of iliac crest bone Graft in Craniofacial surgery. Annals of Plastic Surgery, 83(3), 352-358. https://doi.org/10.1097/sap.0000000000001682
  34. Katz, M. S., Ooms, M., Heitzer, M., Peters, F., Winnand, P., Kniha, K., Möhlhenrich, S. C., Hölzle, F., Knobe, M., & Modabber, A. (2021). Postoperative morbidity and complications in elderly patients after harvesting of iliac crest bone grafts. Medicina, 57(8), 759. https://doi.org/10.3390/medicina57080759
  35. Schaaf, H., Lendeckel, S., Howaldt, H., & Streckbein, P. (2010). Donor site morbidity after bone harvesting from the anterior
  36. iliac crest. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 109(1), 52-58. https://doi.org/10.1016/j.tripleo.2009.08.023
  37. Tosun, E., Akkocaoğlu, M., Tüz, H. H., Avağ, C., & Gokturk, T. (2019). Complications associated with anterior iliac bone grafting for the reconstruction of Dentoalveolar defects. Journal of Craniofacial Surgery, 30(4), 980-984. https://doi.org/10.1097/scs.0000000000005331
  38. Gawhale, S. K., Kantharaju, H., Prasanna Kumar, G. S. & Shah, N. (2020). Incisional Hernia Secondary to Iliac Crest Bone Graft: A Rare Case Report and Review of Literature. J. Orthop. Case Rep., 10, 15-17. https://doi.org/ 10.13107/jocr.2020.v10.i07.1898.
  39. Flierl, M. A., Smith, W. R., Mauffrey, C., Irgit, K., Williams, A. E., Ross, E., Peacher, G., Hak, D. J., & Stahel, P. F. (2013). Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: A retrospective cohort study in 182 patients. Journal of Orthopaedic Surgery and Research, 8(1). https://doi.org/10.1186/1749-799x-8-33
  40. Petrella, G., Tosi, D., Pantaleoni, F., & Adani, R. (2021). Vascularized bone grafts for post-traumatic defects in the upper
  41. extremity. Archives of Plastic Surgery, 48(01), 84-90. https://doi.org/10.5999/aps.2020.00969
  42. Feltri, P., Solaro, L., Errani, C., Schiavon, G., Candrian, C., & Filardo, G. (2021). Vascularized fibular grafts for the treatment
  43. of long bone defects: Pros and cons. A systematic review and meta-analysis. Archives of Orthopaedic and Trauma Surgery,
  44. (1), 29-48. https://doi.org/10.1007/s00402-021-03962-5
  45. Baseri, N., Meysamie, A., Campanile, F., Hamidieh, A., & Jafarian, A. (2022). Bacterial contamination of bone allografts
  46. in the tissue banks: A systematic review and meta-analysis. Journal of Hospital Infection, 123, 156-173. https://doi.org/10.1016/j.jhin.2021.10.020
  47. Yusof, N. (2017). Advances of radiation sterilisation in tissue banking. Cell and Tissue Banking, 19(2), 175-186. https://doi.
  48. org/10.1007/s10561-017-9651-4
  49. Yang Harmony, T. C., Yusof, N., Ramalingam, S., Baharin, R., Syahrom, A., & Mansor, A. (2021). Deep-freezing temperatures during irradiation preserves the compressive strength of human cortical bone allografts: A cadaver study. Clinical Orthopaedics & Related Research, 480(2), 407-418. https://doi.org/10.1097/corr.0000000000001968
  50. Enneking, W. F., & Campanacci, D. A. (2001). Retrieved human allografts. The Journal of Bone and Joint Surgery-American
  51. Volume, 83(7), 971-986. https://doi.org/10.2106/00004623-200107000-00001
  52. Kargozar, S., Mozafari, M., Ghodrat, S., Fiume, E., & Baino, F. (2021). Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. Materials Science and Engineering: C, 121, 111741. https://doi.org/10.1016/j.msec.2020.111741
  53. Crush, J., Hussain, A., Seah, K. T., & Khan, W. S. (2021). Bioactive glass: Methods for assessing angiogenesis and osteogenesis. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.643781
  54. Masquelet, A. C., Fitoussi, F., Begue, T., & Muller, G. P. (2000). Reconstruction of the long bones by the induced membrane
  55. and spongy autograft. Ann Chir Plast Esthet., 45(3), 346-353. PMID: 10929461
  56. Morelli, I., Drago, L., George, D. A., Gallazzi, E., Scarponi, S., & Romanò, C. L. (2016). Masquelet technique: Myth or reality?
  57. A systematic review and meta-analysis. Injury, 47, S68-S76. https://doi.org/10.1016/s0020-1383(16)30842-7
  58. Yin, P., Ji, Q., Li, T., Li, J., Li, Z., Liu, J., Wang, G., Wang, S., Zhang, L., Mao, Z., & Tang, P. (2015). A systematic review and
  59. meta-analysis of Ilizarov methods in the treatment of infected Nonunion of tibia and femur. PLOS ONE, 10(11), e0141973.
  60. https://doi.org/10.1371/journal.pone.0141973
  61. Shekhar, S., Gupta, G., Majhee, A., Rani, S., Prasad, P., & Chauhan, G. (2022). A comparative study between bone transport technique using Ilizarov/LRS fixator and induced membrane (Masquelet) technique in management of bone defects in the long bones of lower limb. Journal of Family Medicine and Primary Care, 11(7), 3660. https://doi.org/10.4103/jfmpc.jfmpc_2447_21
  62. Ferreira, N., & Tanwar, Y. S. (2020). Systematic approach to the management of post-traumatic segmental Diaphyseal long
  63. bone defects: Treatment algorithm and comprehensive classification system. Strategies in Trauma and Limb Reconstruction,
  64. (2), 106-116. https://doi.org/10.5005/jp-journals-10080-1466

Downloads

How to Cite

Buryanov, O. ., Kvasha, V. ., Kuprii, V. ., Sobolevskiy, Y. ., Chornyi, V. ., Hliba, H. ., & Rohozynskyi, V. . (2024). Modern Technologies for Bone Defect Replacement (Literature Review). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1), 79–88. https://doi.org/10.15674/0030-59872024179-88

Issue

Section

DIGESTS AND REVIEWS