Effect of magnesium deficiency on bone health
DOI:
https://doi.org/10.15674/0030-598720234121-127Keywords:
Magnesium-dependent bone disorders, osteoporosis, fractures, bone regenerationAbstract
Objective. To assess the impact of magnesium deficiency on bone metabolism based on an analytical analysis of current literature, as well as to systematize data on the impact of magnesium deficiency on the development of osteoporosis, bone regeneration, and to consider it as a risk factor for fracture. Methods. The review is based on the analysis of literature sources from PubMed, Scopus, Web of Science, Cochrane Library, Google, Google Scholar, and RLNS. The search was conducted by keywords: magnesium, deficiency, magnesium and bone tissue, magnesium and osteoporosis, magnesium and fractures, magnesium and bone regeneration. Results. Magnesium is a key element in the metabolic and regulatory processes of the body. Its effects on bone tissue are direct and indirect. The direct magnesium effect on genes involved in osteogenesis is accompanied by proliferation of mesenchymal stem cells and osteoblasts, but magnesium deficiency leads to their reduction and apoptosis. In case of magnesium deficiency, the number and activity of osteoclasts increases. Magnesium regulates bone mineralization in a concentration-dependent manner. Magnesium deficiency increases bone resorption and affects osteopenia and osteoporosis, which can occur indirectly through decreased vitamin D levels, increased biosynthesis of parathyroid hormone, increased oxidative stress and biosynthesis of proinflammatory cytokines. However, data on bone mineral density at different skeletal sites in magnesium deficiency are ambiguous. Magnesium deficiency is considered a risk factor for fracture. It is of great importance for bone regeneration, affecting in various ways: it stimulates the proliferation and differentiation of mesenchymal stem cells and osteoblasts, periosteum cells, increases the movement of osteoblasts to the area of traumatic bone injury, and activates signaling pathways. At the early stage of regeneration magnesium has a positive effect on macrophages, its specificity of action is inhibition of transformation of M2 macrophages into M1 at the tissue-specific stage of regeneration. One of the mechanisms stimulating regeneration may be the effect of magnesium on axons, release and increase of calcitonin-related polypeptide α. Conclusions. Since hypomagnesemia is a potentially modifiable factor, this opens up prospects for maintaining bone health and requires further research in this area.
References
- DiNicolantonio, J. J., O'Keefe, J. H., & Wilson, W. (2018). Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open heart, 5 (1), e000668. https://doi.org/10.1136/openhrt-2017-000668
- Rosique-Esteban, N., Guasch-Ferré, M., Hernández-Alonso, P., & Salas-Salvado, J. (2018). Dietary Magnesium and Cardiovascular Disease: A Review with Emphasis in Epidemiological Studies. Nutrients, 10 (2), 168. https://doi.org/10.3390/nu10020168
- Choi, S., Kim, K. J., Cheon, S., Kim, E. M., Kim, Y. A., Park, C., & Kim, K. K. (2020). Biochemical activity of magnesium ions on human osteoblast migration. Biochemical and biophysical research communications, 531 (4), 588–594. https://doi.org/10.1016/j.bbrc.2020.07.057
- Fiorentini, D., Cappadone, C., Farruggia, G., & Prata, C. (2021). Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients, 13 (4), 1136. https://doi.org/10.3390/nu13041136
- Qi, T., Weng, J., Yu, F., Zhang, W., Li, G., Qin, H., Tan, Z., & Zeng, H. (2021). Insights into the Role of Magnesium Ions in Affecting Osteogenic Differentiation of Mesenchymal Stem Cells. Biological trace element research, 199 (2), 559–567. https://doi.org/10.1007/s12011-020-02183-y
- Erem, S., Atfi, A., & Razzaque, M. S. (2019). Anabolic effects of vitamin D and magnesium in aging bone. The Journal of steroid biochemistry and molecular biology, 193, 105400. https://doi.org/10.1016/j.jsbmb.2019.105400
- Jahnen-Dechent, W., & Ketteler, M. (2012). Magnesium basics. Clinical kidney journal, 5 (Suppl 1), i3–i14. https://doi.org/10.1093/ndtplus/sfr163
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (1997). Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. 6 Magnesium. Washington (DC): National Academies Press (US). Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK109816.
- de Baaij, J. H., Hoenderop, J. G., & Bindels, R. J. (2015). Magnesium in man: implications for health and disease. Physiological reviews, 95 (1), 1–46. https://doi.org/10.1152/physrev.00012.2014
- Ismail, A. A. A., Ismail, Y., & Ismail, A. A. (2018). Chronic magnesium deficiency and human disease; time for reappraisal? QJM: monthly journal of the Association of Physicians, 111 (11), 759–763. https://doi.org/10.1093/qjmed/hcx186
- Shahsavani, Z., Asadi, A. H., Shamshirgardi, E., & Akbarzadeh, M. (2021). Vitamin D, Magnesium and Their Interactions: A Review. International Journal of Nutrition Sciences, 6(3), 113–118. https://doi.org/10.30476/IJNS.2021.91766.1144
- Uwitonze, A. M., & Razzaque, M. S. (2018). Role of Magnesium in Vitamin D Activation and Function. The Journal of the American Osteopathic Association, 118 (3), 181–189. https://doi.org/10.7556/jaoa.2018.037
- Reddy, P., & Edwards, L. R. (2019). Magnesium Supplementation in Vitamin D Deficiency. American journal of therapeutics, 26 (1), e124–e132. https://doi.org/10.1097/MJT.0000000000000538
- Uwitonze, A. M., Rahman, S., Ojeh, N., Grant, W. B., Kaur, H., Haq, A., & Razzaque, M. S. (2020). Oral manifestations of magnesium and vitamin D inadequacy. The Journal of steroid biochemistry and molecular biology, 200, 105636. https://doi.org/10.1016/j.jsbmb.2020.105636
- Razzaque M. S. (2018). Magnesium: Are We Consuming Enough? Nutrients, 10 (12), 1863. https://doi.org/10.3390/nu10121863
- Akizawa, Y., Koizumi, S., Itokawa, Y., Ojima, T., Nakamura, Y., Tamura, T., & Kusaka, Y. (2008). Daily magnesium intake and serum magnesium concentration among Japanese people. Journal of epidemiology, 18 (4), 151–159. https://doi.org/10.2188/jea.je2007381
- Kim, J. M., Yang, Y. S., Hong, J., Chaugule, S., Chun, H., van der Meulen, M. C. H., Xu, R., Greenblatt, M. B., & Shim,J. H. (2022). Biphasic regulation of osteoblast development via the ERK MAPK-mTOR pathway. ЕLife, 11, e78069. https://doi.org/10.7554/eLife.78069
- Diaz-Tocados, J. M., Herencia, C., Martinez-Moreno, J. M., Montes de Oca, A., Rodriguez-Ortiz, M. E., Vergara, N., Blanco, A., Steppan, S., Almaden, Y., Rodriguez, M., & Munoz-Castaneda, J. R. (2017). Magnesium Chloride promotes Osteogenesis through Notch signaling activation and expansion of Mesenchymal Stem Cells. Scientific reports, 7 (1), 7839. https://doi.org/10.1038/s41598-017-08379-y
- Wu, L., Feyerabend, F., Schilling, A. F., Willumeit-Romer,R., & Luthringer, B. J. C. (2015). Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture. Acta biomaterialia, 27, 294–304. https://doi.org/10.1016/j.actbio.2015.08.042
- Li, Y., Wang, J., Yue, J., Wang, Y., Yang, C., & Cui, Q. (2018). High magnesium prevents matrix vesicle-mediated mineralization in human bone marrow-derived mesenchymal stem cells via mitochondrial pathway and autophagy. Cell biology international, 42 (2), 205–215. https://doi.org/10.1002/cbin.10888
- Zhang, J., Tang, L., Qi, H., Zhao, Q., Liu, Y., & Zhang, Y. (2019). Dual Function of Magnesium in Bone Biomineralization. Advanced healthcare materials, 8 (21), e1901030. https://doi.org/10.1002/adhm.201901030
- Castiglioni, S., Cazzaniga, A., Albisetti, W., & Maier, J. A. (2013). Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients, 5 (8), 3022–3033. https://doi.org/10.3390/nu5083022
- Al Alawi, A. M., Majoni, S. W., & Falhammar, H. (2018). Magnesium and Human Health: Perspectives and Research Directions. International journal of ndocrinology, 2018, 9041694. https://doi.org/10.1155/2018/9041694
- Dominguez, L. J., Veronese, N., Ciriminna, S., Perez-Albela, J. L., Vasquez-López, V. F., Rodas-Regalado, S., Di Bella, G., Parisi, A., Tagliaferri, F., & Barbagallo, M. (2023). Association between Serum Magnesium and Fractures: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients, 15 (6), 1304. https://doi.org/10.3390/nu15061304
- Zhou, H., Liang, B., Jiang , H., Denga, Z., & Yu, K. (2021). Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. Journal of Magnesium and Alloys, 9, 779–804. https://doi.org/10.1016/j.jma.2021.03.004
- Chang, J., Yu, D., Ji, J., Wang, N., Yu, S., & Yu, B. (2020). The Association Between the Concentration of Serum Magnesium and Postmenopausal Osteoporosis. Frontiers in medicine, 7, 381. https://doi.org/10.3389/fmed.2020.00381
- Mederle, O. A., Balas, M., Ioanoviciu, S. D., Gurban, C. V., Tudor, A., & Borza, C. (2018). Correlations between bone turnover markers, serum magnesium and bone mass density in postmenopausal osteoporosis. Clinical interventions in aging, 13, 1383–1389. https://doi.org/10.2147/CIA.S170111
- Orchard, T. S., Larson, J. C., Alghothani, N., Bout-Tabaku, S., Cauley, J. A., Chen, Z., LaCroix, A. Z., Wactawski-Wende,J., & Jackson, R. D. (2014). Magnesium intake, bone mineral density, and fractures: results from the Women's Health Initiative Observational Study. The American journal of clinical nutrition, 99 (4), 926–933. https://doi.org/10.3945/ajcn.113.067488
- Groenendijk, I., van Delft, M., Versloot, P., van Loon, L.J. C., & de Groot, L. C. P. G. M. (2022). Impact of magnesium on bone health in old er adults: A systematic review and meta-analysis. Bone, 154, 116233. https://doi.org/10.1016/j.bone.2021.116233
- Farsinejad-Marj, M., Saneei, P., & Esmaillzadeh, A. (2016). Dietary magnesium intake, bone mineral density and risk of fracture: a systematic review and meta-analysis. Osteoporosis International. 27 (4), 1389–1399. https://doi.org/10.1007/s00198-015-3400-y
- Wright, H. H., Kruger, M. C., Schutte, W. D., Wentzel-Viljoen,E., Kruger, I. M., & Kruger, H. S. (2019). Magnesium Intake Predicts Bone Turnover in Postmenopausal Black South African Women. Nutrients, 11 (10), 2519. https://doi.org/10.3390/nu11102519
- Kunutsor, S. K., Whitehouse, M. R., Blom, A. W., & Laukkanen,J. A. (2017). Low serum magnesium levels are associated with increased risk of fractures: a long-term prospective cohort study. European journal of epidemiology, 32 (7), 593–603. https://doi.org/10.1007/s10654-017-0242-2
- Veronese, N., Stubbs, B., Solmi, M., Noale, M., Vaona, A., Demurtas, J., & Maggi, S. (2017). Dietary magnesium intake and fracture risk: data from a large prospective study. The British journal of nutrition, 117 (11), 1570–1576. https://doi.org/10.1017/S0007114517001350
- Rondanelli, M., Faliva, M. A., Tartara, A., Gasparri, C., Perna, S., Infantino, V., Riva, A., Petrangolini, G., & Peroni, G. (2021). An update on magnesium and bone health. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 34 (4), 715–736. https://doi.org/10.1007/s10534-021-00305-0
- Antoniac, I., Miculescu, M., Mănescu Păltânea, V., Stere, A., Quan, P. H., Păltânea, G., Robu, A., & Earar, K. (2022). Magnesium-Based Alloys Used in Orthopedic Surgery. Materials (Basel, Switzerland), 15 (3), 1148. https://doi.org/10.3390/ma15031148
- Chow, D. H. K., Wang, J., Wan, P., Zheng, L., Ong, M. T. Y., Huang, L., Tong, W., Tan, L., Yang, K., & Qin, L. (2021). Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits. Bioactive materials, 6 (11), 4176–4185. https://doi.org/10.1016/j.bioactmat.2021.03.044
- Hung, C. C., Chaya, A., Liu, K., Verdelis, K., & Sfeir, C. (2019). The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta biomaterialia, 98, 246–255. https://doi.org/10.1016/j.actbio.2019.06.001
- Libako, P., Nowacki, W., Castiglioni, S., Mazur, A., & Maier,J. A. (2016). Extracellular magnesium and calcium blockers modulate macrophage activity. Magnesium research, 29 (1), 11–21. https://doi.org/10.1684/mrh.2016.0398
- Wang, G., Luo, J., Qiao, Y., Zhang, D., Liu, Y., Zhang, W., Liu, X.,& Jiang, X. (2022). AMPK/mTOR Pathway Is Involved in Autophagy Induced by Magnesium-Incorporated TiO2 Surface to Promote BMSC Osteogenic Differentiation. Journal of functional biomaterials, 13 (4), 221. https://doi.org/10.3390/jfb13040221
- Zhang, Y., Xu, J., Ruan, Y. C., Yu, M. K., O'Laughlin, M., Wise, H., Chen, D., Tian, L., Shi, D., Wang, J., Chen, S., Feng, J. Q., Chow, D. H., Xie, X., Zheng, L., Huang, L.,
- Huang, S., Leung, K., Lu, N., Zhao, L., … Qin, L. (2016). Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nature medicine, 22 (10), 1160–1169. https://doi.org/10.1038/nm.4162
- Xie, H., Cui, Z., Wang, L., Xia, Z., Hu, Y., Xian, L., Li, C., Xie, L., Crane, J., Wan, M., Zhen, G., Bian, Q., Yu, B., Chang,W., Qiu, T., Pickarski, M., Duong, L. T., Windle, J. J., Luo, X., Liao, E., … Cao, X. (2014). PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nature medicine, 20 (11), 1270–1278. https://doi.org/10.1038/nm.3668
- Peng, Y., Wu, S., Li, Y., & Crane, J. L. (2020). Type H blood vessels in bone modeling and remodeling. Theranostics, 10 (1), 426–436. https://doi.org/10.7150/thno.34126
- Lin, S., Yang, G., Jiang, F., Zhou, M., Yin, S., Tang, Y., Tang, T., Zhang, Z., Zhang, W., & Jiang, X. (2019). A Magnesium-Enriched 3D Culture System that Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 6 (12), 1900209. https://doi.org/10.1002/advs.201900209
- Belluci, M. M., Giro, G., Del Barrio, R. A. L., Pereira, R. M. R., Marcantonio, E., Jr, & Orrico, S. R. P. (2011). Effects ofmagnesium intake deficiency on bone metabolism and bone tissue around osseointegrated implants. Clinical oral implants research, 22 (7), 716–721. https://doi.org/10.1111/j.1600-0501.2010.02046.x
- Song, Y., Xu, L., Jin, X., Chen, D., Jin, X., & Xu, G. (2022). Effect of calcium and magnesium on inflammatory cytokines in accidentally multiple fracture adults: A short-term follow-up. Medicine, 101 (1), e28538. https://doi.org/10.1097/MD.0000000000028538
- Veronese, N., Pizzol, D., Smith, L., Dominguez, L. J., & Barbagallo,M. (2022). Effect of Magnesium Supplementation on Inflammatory Parameters: A Meta-Analysis of Randomized Controlled Trials. Nutrients, 14 (3), 679. https://doi.org/10.3390/nu14030679
Downloads
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).