• Serhiy Hariyan Ternopil Regional Hospital. Ukraine, Ukraine
  • Oleksandr Tsybulskyi Ternopil Regional Hospital. Ukraine, Ukraine
  • Vasyl Makhovskyi Ternopil Regional Hospital. Ukraine, Ukraine
  • Zoia Salii I. Horbachevsky Ternopil National Medical University. Ukraine, Ukraine




Segmental bone defect, combat trauma, distraction osteogenesis


Upper and lower limb injuries resulting from battlefield trauma is a complex multidisciplinary problem. Efficacy of the treatment of segmental bone defects in patients with combat trauma is a subject of analysis for improving its results. Purpose. An analysis of the modern treatment strategies of the segmental bone defects in patients with battlefield trauma under conditions of distraction osteogenesis (based on data available in the literature and own clinical experience). Methods. Analytical review of scientific works and analysis of treatment results of 39 patients with segmental bone defects associated with battlefield trauma and treated using distraction osteogenesis were conducted. Results. Patients with segmental limbs defects require special attention of a multidisciplinary team of specialists to identify reconstructive opportunities to save the limb. Distraction osteogenesis — is an effective method of treating of segmental fractures and shortening of the limbs, infectious complications that led to bone defect formation. Bone transport with ring external fixator (ExFix) is considered as a classical method. Authors analyzed and illustrated with three clinical cases their own results of application of different distraction osteogenesis technique. Conclusions. Different types of ExFix can be applied independently or in combination with internal fixators. The use of an intramedullar nail along which distraction osteogenesis is carried out allows to provide better control of the axis of the limb and transported fragment, reduce the residence time in the ExFix, and, moreover, external fixation devices with a simpler configuration can be used. Transport along the plate allows to maintain proper axial relationships in the presence of short periarticular fragments and improve the quality of fixation but it also increases the risks of FRI and re-operations.

Author Biographies

Serhiy Hariyan, Ternopil Regional Hospital. Ukraine


Oleksandr Tsybulskyi, Ternopil Regional Hospital. Ukraine


Vasyl Makhovskyi, Ternopil Regional Hospital. Ukraine


Zoia Salii, I. Horbachevsky Ternopil National Medical University. Ukraine

MD, PhD, DSc


  1. Mathieu, L., Bazile, F., Barthélémy, R., Duhamel, P., & Rigal, S. (2011). Damage control orthopaedics in the context of battlefield injuries: The use of temporary external fixation on combat trauma soldiers. Orthopaedics & Traumatology: Surgery & Research, 97(8), 852–859. https://doi.org/10.1016/j.otsr.2011.05.014
  2. Baus, A., Bich, C. S., Grosset, A., de Rousiers, A., Duhoux, A., Brachet, M., Duhamel, P., Thomas, M., Rogez, D., Mathieu, L., & Bey, E. (2020). Medical and surgical management of lower extremity war-related injuries. Experience of the French Military Health Service (FMHS). Annales de Chirurgie Plastique Esthétique, 65(5-6), 447–478. https://doi.org/10.1016/j.anplas.2020.05.008
  3. Guthrie, H., Clasper, J., Kay, A., et. al. (2011). Initial Extremity War Wound Debridement: A Multidisciplinary Consensus BMJ Military Health,157, 170-175.
  4. Hoyt, B. W., Wade, S. M., Harrington, C. J., Potter, B. K., Tintle, S. M., & Souza, J. M. (2021). Institutional Experience and Orthoplastic Collaboration Associated with Improved Flap-based Limb Salvage Outcomes. Clinical Orthopaedics & Related Research, 479(11), 2388–2396. https://doi.org/10.1097/corr.0000000000001925
  5. Haines, N. M., Lack, W. D., Seymour, R. B., & Bosse, M. J. (2016). Defining the Lower Limit of a “Critical Bone Defect” in Open Diaphyseal Tibial Fractures. Journal of Orthopaedic Trauma, 30(5), e158-e163. https://doi.org/10.1097/bot.0000000000000531
  6. Rigal, S., Mathieu, L., & de l’Escalopier, N. (2018). Temporary fixation of limbs and pelvis. Orthopaedics & Traumatology: Surgery & Research, 104(1), S81-S88. https://doi.org/10.1016/j.otsr.2017.03.032
  7. https://media.aofoundation.org//media/files/mgmt_limb_inj_ukrainian_by_chapter/mgmt-limb-inj-ukr-ch8.pdf?rev=bbaa4d3e0ef1458d936b53d1bd8a65a5.
  8. Strafun, S. S., Shypunov, V. G., Savka, I. S., Tsivina, S. A., Sobkova, J. E., & Borzykh, N. A. (2021). Application ofspacers in combination with plastic muscle flaps in treatment of gunshot of the bones of the lower limbs complicated with compartment syndrome development. Current Aspects of Military Medicine, 28(1), 164-177. https://doi.org/10.32751/2310-4910-2021-28-1-14
  9. Tseluyko, О. В., Tymchuk, O. B., & Aslanyan, S. A. (2020). Negative pressure wound therapy treatment of soft tissue gunshot wounds of the limbs. Current Aspects of Military Medicine, 27(2), 201-208. https://doi.org/10.32751/2310-4910-2020-27-43
  10. Bich, C. S., Brachet, M., Baus, A., Duhoux, A., Duhamel, P., & Bey, É. (2020). Le lambeau neurofasciocutané sural: fiabilisation par le prélèvement d’un lambeau en raquette. Annales de Chirurgie Plastique Esthétique, 65(4), 300–305. https://doi.org/10.1016/j.anplas.2020.02.003
  11. Solomin, L., & Slongo, T. (2016). Long Bone Defect Classification: What It Should Be? Journal of Bone Reports & Recommendations, 02(01). https://doi.org/10.4172/2469-6684.100016
  12. Nauth, A., Schemitsch, E., Norris, B., Nollin, Z., & Watson, J. T. (2018). Critical-Size Bone Defects. Journal of Orthopaedic Trauma, 32, S7-S11. https://doi.org/10.1097/bot.0000000000001115
  13. Franke, A., Hentsch, S., Bieler, D., Schilling, T., Weber, W., Johann, M., & Kollig, E. (2017). Management of Soft-Tissue and Bone Defects in a Local Population: Plastic and Reconstructive Surgery in a Deployed Military Setting. Military Medicine, 182(11), e2010–e2020. https://doi.org/10.7205/MILMED-D-16-00372
  14. Younger, E. M., & Chapman, M. W. (1989). Morbidity at Bone Graft Donor Sites. Journal of Orthopaedic Trauma, 3(3), 192–195. https://doi.org/10.1097/00005131-198909000-00002
  15. Laurencin, C. T., & Nair, L. S. (2015). Regenerative Engineering: Approaches to Limb Regeneration and Other Grand Challenges. Regenerative Engineering and Translational Medicine, 1(1–4), 1–3. https://doi.org/10.1007/s40883-015-0006-z
  16. Wu, D., Wang, Z., Wang, J., Geng, Y., Zhang, Z., Li, Y., Li, Q., Zheng, Z., Cao, Y., & Zhang, Z.-Y. (2018). Development of a micro-tissue-mediated injectable bone tissue engineering strategy for large segmental bone defect treatment. Stem Cell Research & Therapy, 9(1). https://doi.org/10.1186/s13287-018-1064-1
  17. Zhi, W., Wang, X., Sun, D., Chen, T., Yuan, B., Li, X., Chen, X., Wang, J., Xie, Z., Zhu, X., Zhang, K., & Zhang, X. (2021). Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioactive Materials, 11, 240–253. https://doi.org/10.1016/j.bioactmat.2021.09.024
  18. Alkindi, M., Ramalingam, S., Alghamdi, O., Alomran, O. M., Binsalah, M. A., & Badwelan, M. (2021). Guided bone regeneration with osteoconductive grafts and PDGF: A tissue engineering option for segmental bone defect reconstruction. Journal of Applied Biomaterials & Functional Materials, 19, 228080002098740. https://doi.org/10.1177/2280800020987405
  19. Yu, Y., Wang, Y., Zhang, W., Wang, H., Li, J., Pan, L., Han, F., & Li, B. (2020). Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair. Acta Biomaterialia, 113, 317–327. https://doi.org/10.1016/j.actbio.2020.06.030
  20. Shen, Z., Lin, H., Chen, G., Zhang, Y., Li, Z., Li, D., Xie, L., Li, Y., Huang, F., & Jiang, Z. (2019). Comparison between the induced membrane technique and distraction osteogenesis in treating segmental bone defects: An experimental study in a rat model. PLOS ONE, 14(12), e0226839. https://doi.org/10.1371/journal.pone.0226839
  21. Tong, K., Zhong, Z., Peng, Y., Lin, C., Cao, S., Yang, Y., & Wang, G. (2017). Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury, 48(7), 1616–1622. https://doi.org/10.1016/j.injury.2017.03.042
  22. Akgun, U., Canbek, U., & Aydogan, N. H. (2018) Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury, 49(3), 738. https://doi.org/10.1016/j.injury.2018.01.014
  23. Masquelet, A. C., & Begue, T. (2010). The concept of induced membrane for reconstruction of long bone The Orthopedic clinics of North America, 41(1). https://doi.org/10.1016/j.ocl.2009.07.011
  24. Mauffrey, C., Hake, M. E., Chadayammuri, V., & Masquelet,A.C. (2016). Reconstruction of Long Bone Infections Using the Induced Membrane Technique: Tips and Tricks. Journal of orthopaedic trauma, 30(6), e188–e193. https://doi.org/10.1097/BOT.0000000000000500 defects. The Orthopedic clinics of North America, 41(1), . https://doi.org/10.1016/j.ocl.2009.07.011
  25. Masquelet A. C. (2017). Induced Membrane Technique: Pearls and Pitfalls. Journal of orthopaedic trauma, 31 Suppl 5, S36–S38. https://doi.org/10.1097/BOT.0000000000000979
  26. Morelli, I., Drago, L., George, D. A., Gallazzi, E., Scarponi, S., & Romanò, C. L. (2016). Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury, 47, S68–S76. https://doi.org/10.1016/s0020-1383(16)30842-7
  27. Ilizarov G. A. (1990). Clinical application of the tension-stress effect for limb lengthening. Clinical orthopaedics and related research, (250), 8–26. https://doi.org/10.1097/00003086-199001000-00003
  28. Yin, P., Zhang, L., Li, T., Zhang, L., Wang, G., Li, J., Liu, J., Zhou,J., Zhang, Q., & Tang, P. (2015). Infected nonunion of tibia and femur treated by bone transport. Journal of orthopaedic surgery and research, 10, 49. https://doi.org/10.1186/s13018-015-0189-5
  29. Hamdy, R. C., Rendon, J. S., Tabrizian, M. (2012) Distraction osteogenesis and its challenges in bone regeneration. In Haim Tal (Ed.), Bone Regeneration (pp. 185–212). IntechOpen. https://doi.org/10.5772/32229
  30. Rowe, N. M., Mehrara, B. J., Luchs, J. S., Dudziak, M. E., Steinbrech, D. S., Illei, P. B., Fernandez, G. J., Gittes, G. K., & Longaker, M. T. (1999). Angiogenesis during mandibular distraction osteogenesis. Annals of plastic surgery, 42(5), 470–475. https://doi.org/10.1097/00000637-199905000-00002
  31. Catagni, M. A., Guerreschi, F., & Lovisetti, L. (2011). Distraction osteogenesis for bone repair in the 21st century: lessons learned. Injury, 42(6), 580–586. https://doi.org/10.1016/j.injury.2011.04.004

How to Cite