Methodological principles of diagnosis verification and treatment tactics determination in combat limb injuries with bone defects

Authors

DOI:

https://doi.org/10.15674/0030-5987202345-13

Keywords:

Combat injuries, long bone defects, fixation method conversion

Abstract

Objective. To develop a classification system for long bone defects resulting from combat limb injuries, establish criteria for predicting pathological fractures, and determine indicators for assessing the feasibility of converting the fixation method in combat-related injuries. Methods. The modern literature regarding the treatment of combat-related long bone defects resulting was analyzed in three databases: PubMed, Scopus, and Web of Science. The analysis was conducted using keywords such as combat injuries, bone defect, non-union, auto- and allograft transplantation, Ilizarov method — bone transport, Masquelet method — induced membrane, and fixation method replacement. The clinical material used for this study was derived from the evaluation and treatment of 457 patients with long bone defects at the III–IV medical intervention stage. Results. The determination of modern perspectives on the fundamental issues of combat injuries, combined with the analysis of treatment outcomes for such patients, enabled the development and validation of a classification of bone defects that incorporates the volume of bone tissue loss. Furthermore, a prognostic table for the risk of pathological fractures in cases of bone defects and a scoring scale for assessing the feasibility of fixation method conversion have been introduced and applied. Conclusions. The proposed classification allows the verification of all types of long bone defects. Its application in clinical practice offers the possibility of obtaining optimal and standardized treatment methods for different types of bone defects, thus improving outcomes by choice of appropriate technologies for their replacement. The objectification of fracture risk factors identification for bone defects enables the choice of the method and means of segment stabilization. The assessment of the feasibility of the fixation method change allows the evaluation of the patientʼs condition and the local status, facilitating the determination of the potential for method conversion — transition from external fixation devices to intramedullary osteosynthesis, significantly reducing complications during this stage.

Author Biographies

Olexandr Burianov, Bogomolets National Medical University, Kyiv. Ukraine

MD, Prof. in Traumatology and Orthopaedics

Volodymyr Kvasha, Bogomolets National Medical University, Kyiv. Ukraine

MD, Doctor of Sci.

Yuriy Sobolevskiy, Bogomolets National Medical University, Kyiv. Ukraine

MD, PhD

Yurii Yarmoliuk, National Military and Medical Center «GVKG», Kyiv. Ukraine

MD, Prof. in Traumatology and Orthopaedics

Yurii Klapchuk, Military Medical Clinical Center of Northern Region, Kharkiv. Ukraine

MD, PhD

Dmytro Los, Military Medical Clinical Center of the Western Region, Lviv. Ukraine

MD, Doctor of Sci

Valentyn Кuprii, SSI «Center for innovative medical technologies of the national academy of sciences of Ukraine», Kyiv

MD

Gennadii Kolov, SI «Institute of Traumatology and Orthopaedics of the NAMS of Ukraine», Kyiv

MD, PhD

References

  1. El-Rashidy, A. A., Roether, J. A., Harhaus, L., Kneser, U., & Boccaccini, A. R. (2017). Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomaterialia, 62, 1–28. https://doi.org/10.1016/j.actbio.2017.08.030
  2. Nauth, A., Schemitsch, E., Norris, B., Nollin, Z., & Watson,J. T. (2018). Critical-Size Bone Defects: is there a consensus for diagnosis and treatment? Journal of Orthopaedic Trauma,32, S7—S11. https://doi.org/10.1097/bot.0000000000001115
  3. Omar, M., Zeckey, C., Krettek, C., & Graulich, T. (2021). Open fractures. Unfallchirurg, 124 (8), 651–665. https://doi.org/10.1007/s00113-021-01042-2
  4. Mathieu, L., Bilichtin, E., Durand, M., de l’Escalopier, N.,Murison, J. C., Collombet, J.-M., & Rigal, S. (2020). Masquelet technique for open tibia fractures in a military setting. European Journal of Trauma and Emergency Surgery, 46 (5), 1099–1105. https://doi.org/10.1007/s00068-019-01217-y
  5. Hoencamp, R., Vermetten, E., Tan, E. C. T. H., Putter, H., Leenen, L. P. H., & Hamming, J. F. (2014). Systematic review of the prevalence and characteristics of battle
  6. casualties from NATO coalition forces in Iraq and Afghanistan. Injury, 45 (7), 1028–1034. https://doi.org/10.1016/j.injury.2014.02.012
  7. Roberts, D. C., Jose, R. M., Duraku, L. S., Wordsworth, M., Foster, M., Mortiboy, D., Sellon, E., Stapley, S. A., & Power, D. M. (2022). Management of conflict injuries to the upper limb. Part 2: reconstruction and managing complications. Journal of Hand Surgery (European Volume), 47 (8), 787–797. https://doi.org/10.1177/17531934221105225
  8. Martin, J. S., & Marsh, J. L. (1997). Current classification of fractures. Radiologic Clinics of North America, 35 (3), 491–506. https://doi.org/10.1016/s0033-8389(22)00591-7
  9. Samokhvalov, Y., & Burba, O. (2018). Evaluation Of The Effectiveness Of Scientific And Technical Projects Based On The Generalized Harrington Function. Control, navigation and communication systems. Collection of scientific papers, 4 (50), 77–85. https://doi.org/10.26906/sunz.2018.4.077 (in russian)
  10. Waldvogel, F., Medoff, G., & Swartz, M. N. (1970). Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects (first of three parts). N. Engl. J. Med., 282 (4), 198–206. https://doi.org/10.1056/NEJM197001222820406
  11. Cierny, G., & Mader, J. T. (1984). Adult Chronic Osteomyelitis. Orthopedics, 7 (10), 1557–1564. https://doi.org/10.3928/0147-7447-19841001-07
  12. Hotchen, A. J., McNally, M. A., & Sendi, P. (2017). The Classification of Long Bone Osteomyelitis: A Systemic Review of the Literature. Journal of Bone and Joint Infection, 2 (4), 167–174. https://doi.org/10.7150/jbji.21050
  13. Gordon, L., & Chiu, E. J. (1988). Treatment of infected nonunions and segmental defects of the tibia with staged microvascular muscle transplantation and bone-grafting. The Journal of Bone & Joint Surgery, 70 (3), 377–386. https://doi.org/10.2106/00004623-198870030-00009
  14. Romano, C. L., Romano, D., Logoluso, N., & Drago, L. (2011). Bone and joint infections in adults: a comprehensive classification proposal. European Orthopaedics and Traumatology, 1 (6), 207–217. https://doi.org/10.1007/s12570-011-0056-8
  15. May, J. W., Jupiter, J. B., Weiland, A. J., & Byrd, H. S. (1989). Clinical classification of post-traumatic tibial osteomyelitis. The Journal of Bone & Joint Surgery, 71 (9), 1422–1428. https://doi.org/10.2106/00004623-198971090-00027
  16. Tetsworth, K. D., Burnand, H., Hohmann, E., & Glatt, V. (2021). Classification of Bone Defects: An extension of the orthopaedic trauma association open fracture
  17. classification Journal of Orthopaedic Trauma, Publish Ahead of Print, 35 (2), 71–76. https://doi.org/10.1097/bot.0000000000001896
  18. Feltri, P., Solaro, L., Di Martino, A., Candrian, C., Errani, C., & Filardo, G. (2022). Union, complication, reintervention and failure rates of surgical techniques for large diaphyseal defects: a systematic review and meta-analysis. Scientific Reports, 12 (1). https://doi.org/10.1038/s41598-022-12140-5
  19. Sanders, D. W., Bhandari, M., Guyatt, G., Heels-Ansdell, D., Schemitsch, E. H., Swiontkowski, M., Tornetta, P., & Walter, S. (2014). Critical-Sized Defect in the Tibia. Journal of Orthopaedic Trauma, 28 (11), 632–635. https://doi.org/10.1097/bot.0000000000000194
  20. Keating, J. F., Simpson, A. H. R. W., & Robinson, C. M. (2005). The management of fractures with bone loss. The Journal of Bone and Joint Surgery. British volume, 87-B (2), 142–150. https://doi.org/10.1302/0301-620x.87b2.15874
  21. Ferreira, N., & Tanwar, Y. S. (2020). Systematic Approach to the Management of Post-traumatic Segmental Diaphyseal Long Bone Defects: Treatment Algorithm and Comprehensive Classification System. Strategies in Trauma and Limb Reconstruction, 15 (2), 106–116. https://doi.org/10.5005/jp-journals-10080-1466
  22. Sheridan, G., Solomin, L., Komarov, A., Semenistyy, A., & Rozbruch, S. (2022). Universal long bone defect classification. Journal of Limb Lengthening & Reconstruction, 8 (1), 54. https://doi.org/10.4103/jllr.jllr_3_22
  23. Hotchen, A. J., McNally, M. A., & Sendi, P. (2017). The Classification of Long Bone Osteomyelitis: A Systemic Review of the Literature. Journal of Bone and Joint Infection, 2 (4), 167–174. https://doi.org/10.7150/jbji.21050
  24. Rupp, M., Biehl, C., Budak, M., Thormann, U., Heiss, C., & Alt, V. (2018). Diaphyseal long bone nonunions — types, aetiology, economics, and treatment recommendations. International Orthopaedics, 42 (2), 247–258. https://doi.org/10.1007/s00264-017-3734-5
  25. Nauth, A., Schemitsch, E., Norris, B., Nollin, Z., & Watson,J. T. (2018). Critical-size bone defects: Is there a consensus for diagnosis and treatment? Journal of Orthopaedic Trauma, 32(3), S7-S11. https://doi.org/10.1097/bot.0000000000001115.
  26. May, J. W., Jupiter, J. B., Weiland, A. J., & Byrd, H. S. (1989). Clinical classification of post-traumatic tibial osteomyelitis. The Journal of Bone & Joint Surgery, 71 (9), 1422–1428. https://doi.org/10.2106/00004623-198971090-00027
  27. Stafford, P. R., & Norris, B. L. (2010). Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury, 41, S72S–77. https://doi.org/10.1016/s0020-1383(10)70014-0
  28. Dingemans, S. A., Sier, M. A. T., Peters, R. W., Goslings,J.C., & Schepers, T. (2018). Two-stage treatment in patients with patients with high-energy femoral fractures does not lead to an increase in deep infectious complications: a propensity score analysis. European Journal of Trauma and Emergency Surgery, 44 (1), 125–131. https://doi.org/10.1007/s00068-017-0822-6
  29. Kortram, K., Bezstarosti, H., Metsemakers, W.-J., Raschke, M.J., Van Lieshout, E. M. M., & Verhofstad, M. H. J. (2017). Risk factors for infectious complications after open fractures; a systematic review and meta-analysis. International Orthopaedics, 41 (10), 1965–1982. https://doi.org/10.1007/s00264-017-3556-5
  30. Ukai, T., Hamahashi, K., Uchiyama, Y., Kobayashi, Y., & Watanabe, M. (2020). Retrospective analysis of risk factofor deep infection in lower limb Gustilo–Anderson type III fractures. Journal of Orthopaedics and Traumatology, 21 (1). https://doi.org/10.1186/s10195-020-00549-5
  31. Zhao, S., Ye, Z., Zeng, C., Zhang, L., Huang, J., Zhang, W., & Li, R. (2022). Retrospective Analysis of Infection Factors in Secondary Internal Fixation after External Fixation for Open Fracture of a Long Bone: A Cohort of 117 Patients in a Two-Center Clinical Study. BioMed Research International, 2022, 1–8. https://doi.org/10.1155/2022/7284068
  32. Zhang, W., Chen, Z., Wang, W.W., Lu, W. Y., Shang, A. Q., & Hu, L. Q. (2020). Diagnostic value of ROC curve evaluating serum related indexes for bloodstream infection in patients with hematopathy. Zhongguo Shi Yan Xue Ye Xue Za Zhi., 28 (5), 1746–49. https://doi.org/10.19746/j.cnki.issn.1009-2137.2020.05.052.
  33. Zhao, X.-q., Wan, H.-y., Qin, H.-j., Jiang, N., & Yu, B. (2021). Interleukin-6 versus Common Inflammatory Biomarkers for Diagnosing Fracture-Related Infection: Utility and Potential Influencing Factors. Journal of Immunology Research, 2021, 1–11. https://doi.org/10.1155/2021/1461638

Downloads

How to Cite

Burianov, O. ., Kvasha, V. ., Sobolevskiy, Y. ., Yarmoliuk, Y. ., Klapchuk, Y. ., Los, D., Кuprii V., & Kolov, G. . (2024). Methodological principles of diagnosis verification and treatment tactics determination in combat limb injuries with bone defects. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (4), 5–13. https://doi.org/10.15674/0030-5987202345-13

Issue

Section

ORIGINAL ARTICLES