Approaches to surgical treatment and antibacterial therapy in patients with chronic infection after war injuries

Authors

  • Andrej Trampuz Biofilm Research Laboratory Center for Musculoskeletal Surgery Charite–Universitatsmedizin, Berlin. Germany, Germany
  • Olga Pidgaiska Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-5025-977X
  • Volodymyr Filipenko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-5698-2726
  • Kostiantyn Romanenko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-1639-8274
  • Olexii Marushchak Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-5606-8763

DOI:

https://doi.org/10.15674/0030-59872023362-68

Keywords:

Infection, antibiotic therapy, combat trauma

Abstract

Fracture-related infection following orthopedic surgery, especially in cases of war-related trauma, represents a grave complication. The injuries sustained in war often entail severe damage to soft tissues, including significant impairment of vessels, nerves, tendons, muscles, and result in substantial bone defects. Complicating matters further, these infections often involve multidrug-resistant pathogens, making effective treatment a significant challenge. Optimal management of patients with combat-related trauma and signs of infection necessitates specialized care in dedicated centers. The approach to treatment should be guided by a well-defined algorithm that incorporates appropriate surgical interventions alongside systemic and localized antibiotic administration. In instances where chronic infection manifests after war-related injuries and specific causative agents are not definitively identified, initiating empiric therapy is advisable. A combination of meropenem, colistin, and vancomycin can be a suitable choice for initial treatment. Subsequently, once the causative microbes are identified, targeted treatment can be prescribed based on the susceptibility patterns. This article delves into the primary pathogens commonly found in war-related wounds and provides effective antibiotic regimens based on the specific microorganisms. One promising approach for managing severe war injuries is suppressive antibiotic therapy, which enhances the prospects of successful treatment. The comprehensive strategy outlined
here aims to mitigate the serious risks posed by fracture-related infections in the context of war-induced trauma, ultimately improving patient outcomes and prognosis.

Author Biographies

Andrej Trampuz, Biofilm Research Laboratory Center for Musculoskeletal Surgery Charite–Universitatsmedizin, Berlin. Germany

MD, Prof.

Olga Pidgaiska, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, PhD in Traumatology and Orthopaedics

Volodymyr Filipenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Orthopaedics and Traumatology

Kostiantyn Romanenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, PhD in Traumatology and Orthopaedics

Olexii Marushchak, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD

References

  1. Metsemakers, W.-J., Onsea, J., Neutjens, E., Steffens, E., Schuermans, A., McNally, M., & Nijs, S. (2017). Prevention of fracture-related infection: a multidisciplinary care package. International Orthopaedics, 41 (12), 2457–2469. https://doi.org/10.1007/s00264-017-3607-y
  2. Ktistakis, I., Giannoudi, M., & Giannoudis, P. V. (2014). Infection rates after open tibial fractures: Are they decreasing? Injury, 45 (7), 1025–1027. https://doi.org/10.1016/j.injury.2014.03.022
  3. Walter, N., Rupp, M., Lang, S., & Alt, V. (2021). The epidemiology of fracture-related infections in Germany. Scientific Reports, 11 (1). https://doi.org/10.1038/s41598-021-90008-w
  4. Bezstarosti, H., Van Lieshout, E. M. M., Voskamp, L. W., Kortram, K., Obremskey, W., McNally, M. A., Metsemakers, W. J., & Verhofstad, M. H. J. (2018). Insights into treatment and outcome of fracture-related infection: a systematic literature review. Archives of Orthopaedic and Trauma Surgery, 139 (1), 61–72. https://doi.org/10.1007/s00402-018-3048-0
  5. Lu, V., Zhang, J., Patel, R., Zhou, A. K., Thahir, A., & Krkovic, M. (2022). Fracture Related Infections and Their Risk Factors for Treatment Failure — A Major Trauma Centre Perspective. Diagnostics, 12 (5), 1289. https://doi.org/10.3390/diagnostics12051289
  6. Steinmetz, S., Wernly, D., Moerenhout, K., Trampuz, A., & Borens, O. (2019). Infection after fracture fixation. EFORT Open Reviews, 4 (7), 468–475. https://doi.org/10.1302/2058-5241.4.180093
  7. Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7 (4), 493–512. https://doi.org/10.4155/fmc.15.6
  8. Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2 (2), 114–122. https://doi.org/10.1038/nrd1008
  9. Metsemakers, W.-J., Morgenstern, M., Senneville, E., Borens, O., Govaert, G. A. M., Onsea, J., Depypere, M., Richards, R. G., Trampuz, A., Verhofstad, M. H. J., Kates, S. L., Raschke, M., McNally, M. A., & Obremskey, W. T. (2019). General treatment principles for fracture-related infection: recommendations from an international expert group. Archives of Orthopaedic and Trauma Surgery, 140 (8), 1013–1027. https://doi.org/10.1007/s00402-019-03287-4
  10. Depypere, M., Kuehl, R., Metsemakers, W.-J., Senneville, E., McNally, M. A., Obremskey, W. T., Zimmerli, W., Atkins, B. L., & Trampuz, A. (2020). Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection. Journal of Orthopaedic Trauma, 34 (1), 30–41. https://doi.org/10.1097/bot.0000000000001626
  11. Steadman, W., Chapman, P. R., Schuetz, M., Schmutz, B., Trampuz, A., & Tetsworth, K. (2023). Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics, 12 (4), 752. https://doi.org/10.3390/antibiotics12040752
  12. Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. (2012). Bundesgesundheitsblatt - Gesundheitsforschung-Gesundheitsschutz, 55 (10), 1311–1354. https://doi.org/10.1007/s00103-012-1549-5.
  13. Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18 (3), 268–281.
  14. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  15. Akgün, D., Trampuz, A., Perka, C., & Renz, N. (2017). High failure rates in treatment of streptococcal periprosthetic joint infection. The Bone & Joint Journal, 99-B (5), 653–659. https://doi.org/10.1302/0301-620x.99b5.bjj-2016-0851.r1
  16. Renz, N., Rakow, A., Müller, M., Perka, C., & Trampuz, A. (2019). Long-term antimicrobial suppression prevents treatment failure of streptococcal periprosthetic joint infection. Journal of Infection, 79 (3), 236–244. https://doi.org/10.1016/j.jinf.2019.06.015
  17. Wang, B., Xiao, X., Zhang, J., Han, W., Hersi, S. A., & Tang, X. (2021). Epidemiology and microbiology of fracture-related infection: a multicenter study in Northeast China. Journal of Orthopaedic Surgery and Research, 16 (1). https://doi.org/10.1186/s13018-021-02629-6
  18. Depypere, M., Sliepen, J., Onsea, J., Debaveye, Y., Govaert, G. A. M., IJpma, F. F. A., Zimmerli, W., & Metsemakers, W.- J. (2022). The Microbiological Etiology of Fracture-Related Infection. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.934485
  19. Osmon, D. R., Berbari, E. F., Berendt, A. R., Lew, D., Zimmerli, W., Steckelberg, J. M., Rao, N., Hanssen, A., & Wilson, W. R. (2012). Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clinical Infectious Diseases, 56 (1), e1–e25. https://doi.org/10.1093/cid/cis803
  20. Widmer, A. F., Gaechter, A., Ochsner, P. E., & Zimmerli, W. (1992). Antimicrobial treatment of orthopedic implant-related infections with Rifampin combinations. Clinical Infectious Diseases, 14 (6), 1251–1253. https://doi.org/10.1093/clinids/14.6.1251
  21. Sendi, P., & Zimmerli, W. (2012). Antimicrobial treatment concepts for orthopaedic device-related infection. Clinical Microbiology and Infection, 18 (12), 1176–1184. https://doi.org/10.1111/1469-0691.12003

How to Cite

Trampuz, A. ., Pidgaiska, O. ., Filipenko, V. ., Romanenko, K. ., & Marushchak, O. . (2023). Approaches to surgical treatment and antibacterial therapy in patients with chronic infection after war injuries. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3), 62–68. https://doi.org/10.15674/0030-59872023362-68

Issue

Section

IN AID OF PRACTING DOCTOR. LECTURES