MATHEMATICAL MODELING OF VARIANTS OF TRANSPEDICULAR FIXATION AT THE THORACOLUMBAR JUNCTION AFTER ТHХІІ VERTEBRECTOMY DURING TRUNK BACKWARD BENDING

Authors

  • Oleksii Nekhlopochyn Romodanov Neurosurgery Institute, Kyiv, Ukraine, Ukraine
  • Vadim Verbov Romodanov Neurosurgery Institute, Kyiv, Ukraine, Ukraine
  • Ievgen Cheshuk Romodanov Neurosurgery Institute, Kyiv, Ukraine, Ukraine
  • Mykhailo Karpinsky Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-3004-2610
  • Olexander Yaresko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-2037-5964

DOI:

https://doi.org/10.15674/0030-59872023243-49

Keywords:

Finite element model, thoracolumbar junction, corpectomy, bicortical transpedicular stabilization, cross-link, extension

Abstract

Fractures at the thoracolumbar junction are the most common traumatic spinal injuries. Advances in instrumentation for vertebral body replacement have significantly improved surgical techniques.
However, the biomechanical characteristics of stabilizing surgeries have been insufficiently studied. Objective. To investigate the stressstrain state (SSS) of a mathematical finite element model of the human
thoracolumbar spine during trunk backward bending after ТhХІІ vertebra resection, considering different transpedicular fixation options. Methods. A mathematical finite element model of the human
thoracolumbar spine — ThIX‒LV vertebrae — was developed. The ТhХІІ vertebra was removed, and an interbody support and transpedicular
system with 8 screws were implanted to simulate the postsurgical state after a ТhХІІ burst fracture with wide laminectomy, facetectomy, and corpectomy. The influence of transpedicular screw length and the presence of cross-links on the SSS of the model was
examined. Results. The use of bicortical screws reduced stress levels in the bone elements of the model, except in the regions around the screws in the lumbar vertebrae, when compared to short screws.
Installing cross-links decreased stress levels at all control points compared to models without cross-links. Specifically, in the presence of cross-links, the SSS values at the entry points of the short screws
into the vertebral bodies of ThX, ThXI, LI, and LII were 2.3, 1.8, 1.2, and 5.0MPa, respectively, compared to 2.7, 2.0, 1.5, and 6.1 MPa in the models without cross-links. In the case of bicortical screws
without cross-links, the stress values at the screw entry points into the pedicles of the corresponding vertebrae were 2.9, 1.5, 8.2, and 11.2 MPa, respectively, compared to 2.7, 1.5, 7.5, and 10.2 MPa in the models with cross-links. Conclusions. When the trunk is tilted backward, the use of cross-links reduces stress levels at all control points in the models, regardless of the screw length used. Bicortical transpedicular screws increase stress levels on the screws themselves and in the lumbar vertebral bodies surrounding them.

Author Biographies

Oleksii Nekhlopochyn, Romodanov Neurosurgery Institute, Kyiv, Ukraine

MD, PhD

Vadim Verbov, Romodanov Neurosurgery Institute, Kyiv, Ukraine

MD, PhD

Ievgen Cheshuk, Romodanov Neurosurgery Institute, Kyiv, Ukraine

MD

References

  1. Katsuura, Y., Osborn, J. M., & Cason, G. W. (2016). The epidemiology of thoracolumbar trauma: A meta-analysis. Journal
  2. of orthopaedics, 13(4), 383–388. https://doi.org/10.1016/j.jor.2016.06.019
  3. Tanasansomboon, T., Kittipibul, T., Limthongkul, W., Yingsakmongkol, W., Kotheeranurak, V., & Singhatanadgige, W.
  4. (2022). Thoracolumbar burst fracture without neurological deficit: review of controversies and current evidence of treatment. World neurosurgery, 162, 29–35. https://doi.org/10.1016/j.wneu.2022.03.061
  5. Popsuishapka, К. О. (2018). Treatment of the thoracic and lumbar spine vertebrae fractures (clinical and experimental
  6. justification) [Doctoral thesis, Sytenko Institute of Spine and Joint Pathology NAMS of Ukraine, Kharkiv] https://sytenko.
  7. org.ua/scientific-activity/thesis. (in Ukrainian)
  8. Dai, L. Y., Jiang, L. S., & Jiang, S. D. (2009). Anterior-only stabilization using plating with bone structural autograft versus
  9. titanium mesh cages for two- or three-column thoracolumbar burst fractures: a prospective randomized study. Spine, 34(14), 1429–1435. https://doi.org/10.1097/BRS.0b013e3181a4e667
  10. Xu, G. J., Li, Z. J., Ma, J. X., Zhang, T., Fu, X., & Ma, X. L. (2013). Anterior versus posterior approach for treatment
  11. of thoracolumbar burst fractures: a meta-analysis. European spine journal, 22(10), 2176–2183. https://doi.org/10.1007/
  12. s00586-013-2987-y
  13. Dai, L. Y., Jiang, S. D., Wang, X. Y., & Jiang, L. S. (2007). A review of the management of thoracolumbar burst fractures.
  14. Surgical neurology, 67(3), 221–231. https://doi.org/10.1016/j.surneu.2006.08.081
  15. Kaneda, K., Taneichi, H., Abumi, K., Hashimoto, T., Satoh, S., & Fujiya, M. (1997). Anterior decompression and stabilization
  16. with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. The Journal of bone
  17. and joint surgery. American volume, 79(1), 69–83. https://doi.org/10.2106/00004623-199701000-00008
  18. Galbusera, F., Volkheimer, D., Reitmaier, S., Berger-Roscher, N., Kienle, A., & Wilke, H. J. (2015). Pedicle screw loosening:
  19. a clinically relevant complication? European spine journal, 24(5), 1005–1016. https://doi.org/10.1007/s00586-015-3768-6
  20. Wong, C. E., Hu, H. T., Tsai, C. H., Li, J. L., Hsieh, C. C., & Huang, K. Y. (2021). Comparison of Posterior Fixation Strategies
  21. for Thoracolumbar Burst Fracture: A Finite Element Study. Journal of biomechanical engineering, 143(7), 071007.
  22. https://doi.org/10.1115/1.4050537
  23. Liu, J., Yang, S., Lu, J., Fu, D., Liu, X., & Shang, D. (2018). Biomechanical effects of USS fixation with different screwinsertion depths on the vertebrae stiffness and screw stress for the treatment of the L1 fracture. Journal of back and
  24. musculoskeletal rehabilitation, 31(2), 285–297. https://doi.org/10.3233/BMR-169692
  25. Cornaz, F., Widmer, J., Snedeker, J. G., Spirig, J. M., & Farshad, M. (2021). Cross-links in posterior pedicle screwrod
  26. instrumentation of the spine: a systematic review on mechanical, biomechanical, numerical and clinical studies.
  27. European spine journal, 30(1), 34–49. https://doi.org/10.1007/s00586-020-06597-z
  28. Karami, K. J., Buckenmeyer, L. E., Kiapour, A. M., Kelkar, P. S., Goel, V. K., Demetropoulos, C. K., & Soo, T. M. (2015). Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. Journal of spinal disorders & techniques, 28(3), E133–E139. https://doi.org/10.1097/BSD.0000000000000178
  29. Nekhlopochyn, O. S., Verbov, V. V., Karpinsky, M. Y., & Yaresko, O. V. (2021). Biomechanical evaluation of the pedicle
  30. screw insertion depth and role of cross-link in thoracolumbar junction fracture surgery: a finite element study under
  31. compressive loads. Ukrainian Neurosurgical Journal, 27(3), 25–32. https://doi.org/10.25305/unj.230621
  32. Cowin, S. C. (2001). Bone Mechanics Handbook. Boca Raton: CRC Press.
  33. Boccaccio, A., & Pappalettere, C. (2011) Mechanobiology of fracture healing: basic principles and applications in orthodontics and orthopaedics. In V. Klika (Ed.), Theoretical Biomechanics (pp. 21–48). Rijeka, Croatia.
  34. Nekhlopochin, A. S., Nekhlopochin, S. N., Karpinsky, M. Yu., Shvets, A. I., Karpinskaya, E. D., & Yaresko, A. V. (2017).
  35. Mathematical analysis and optimization of design characteristics of stabilizing vertebral body replacing systems for subaxial cervical fusion using the finite element method. Hirurgiâ pozvonocnika, 14(1), 37–45. https://doi.org/10.14531/ss2017.1.37-45
  36. Radchenko, V., Kutsenko, V., Popov, A., Karpinskу M., & Karpinska, O. (2022). Modeling the variants of transpedicular
  37. fixation of the thoracic spine in the rejection of one-three vertebrae. Trauma, 18(5), 95–102. https://doi.org/10.22141/1608-
  38. 5.18.2017.114125 (in Ukrainian)
  39. Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the mechanical behavior of biomedical materials, 1(1), 30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001
  40. Krishnan, R. H., Devanandh, V, Brahma, A. K, & Pugazhenthi, S. Estimation of mass moment of inertia of human body, when bending forward, for the design of a self-transfer robotic facility. Journal of Engineering Science and Technology, 11(2), 166 – 176.
  41. Rao, S. S. (2010). The finite element method in engineering (5th ed). Editeur: Elsevier Science.
  42. Kumar, K, Zindani, D, & Davim. J. P. (2020). Mastering SolidWorks. Practical Examples. Springer Cham. https://doi.
  43. org/10.1007/978-3-030-38901-7

How to Cite

Nekhlopochyn, O., Verbov, V. ., Cheshuk, I. ., Karpinsky, M. ., & Yaresko, O. . (2023). MATHEMATICAL MODELING OF VARIANTS OF TRANSPEDICULAR FIXATION AT THE THORACOLUMBAR JUNCTION AFTER ТHХІІ VERTEBRECTOMY DURING TRUNK BACKWARD BENDING. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 43–49. https://doi.org/10.15674/0030-59872023243-49

Issue

Section

ORIGINAL ARTICLES