Surgical techniques for the articular cartilage repair: literature review and meta-analysis

Authors

  • Oleksandr Burianov Bogomolets National Medical University, Kyiv. Ukraine, Ukraine
  • Taras Omelchenko Bogomolets National Medical University, Kyiv. Ukraine, Ukraine
  • Yevhenii Levytskyi Bogomolets National Medical University, Kyiv. Ukraine, Ukraine

DOI:

https://doi.org/10.15674/0030-598720223-4126-137

Keywords:

Osteochondral defects, extracellular matrix, Autologous Matrix Induced Chondrogenesis, adipose tissue derived mesenchymal stem cell, bone marrow mesenchymal stem cells, meta-analysis

Abstract

Objective. To evaluate the clinical efficacy and safety of implementing the extracellular matrix (ECM), Autologous Matrix Induced Chondrogenesis (AMIC), adipose tissue derived mesenchymal stem cell (AD-MSCs), as well as bone marrow mesenchymal stem cells (BM-MSCs) for treating the osteochondral defects of knee joint and the talocrural one. Methods. Investigating by the facilities of PubMed, Embase and the manual searches, implemented from 2018 till January, 2022. There have been included articles with the І‒ІV level of evidence, studying the osteochondral defects over 0.5 сm2, with at least one-year duration of monitoring more than 10 patients, defining the scores on VAS (Visual Analogue Scale), Tegner Activity Scale, FAOS (Foot and Ankle Outcome Score). The results were evaluated after 1–2, 3–5 and over 5 years-period of monitoring. Meta-analysis was applied by the facilities of RStudio. Results. 14 investigations with 720 patients were incorporated. ECM, AMIC, AD-MSCs and BM-MSCs represented significantly better functional outcomes in comparison with the bone marrow stimulation procedures (MSP) on the VAS, Tegner Activity Scale, and FAOS scales. Patients treated according to the AMIC+BMAC (bone marrow aspirate concentrate) method showed better functional results compared to the standard AMIC technique. The rate of unsuccessful manipulations followed by revision operations in the MSP group is significantly higher than in others after 4 or more years of monitoring. The results obtained in a long-term investigation showed no deterioration after 5 years or more. Conclusions. Modern methods of cartilage repair in comparison with the creation of microfractures and microdrilling provide better quality regeneration, better long-term results, fewer complications, and higher rates of return to activity. Future studies should be longer-lasting and include more representative populations to determine the efficacy and safety of these methods.

Author Biographies

Oleksandr Burianov, Bogomolets National Medical University, Kyiv. Ukraine

MD, Prof. in Traumatology and Orthopaedics

Taras Omelchenko, Bogomolets National Medical University, Kyiv. Ukraine

MD, Prof. in Traumatology and Orthopaedics

Yevhenii Levytskyi, Bogomolets National Medical University, Kyiv. Ukraine

MD

References

  1. Sophia Fox, A. J., Bedi, A., & Rodeo, S. A. (2009). The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health: A Multidisciplinary Approach, 1(6), 461–468. https://doi.org/10.1177/1941738109350438
  2. Dávila Castrodad, I. M., Mease, S. J., Werheim, E., McInerney, V. K., & Scillia, A. J. (2020). Arthroscopic Chondral Defect Repair With Extracellular Matrix Scaffold and Bone Marrow Aspirate Concentrate. Arthroscopy Techniques, 9(9), e1241-e1247. https://doi.org/10.1016/j.eats.2020.05.001
  3. Rosa, D., Balato, G., Ciaramella, G., Soscia, E., Improta, G., & Triassi, M. (2015). Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle aged patients. Journal of Orthopaedics and Traumatology, 17(1), 55–62. https://doi.org/10.1007/s10195-015-0383-6
  4. Steele, J.R., Dekker, T. J., Federer, A. E., Liles, J. L., Adams, S. B., Easley, M. E. (2018). Osteochondral lesions of the talus: Current concepts in diagnosis and treatment. Foot Ankle Orthop., 3, 247301141877955.
  5. Fossum, V., Hansen, A. K., Wilsgaard, T., & Knutsen, G. (2019). Collagen-Covered Autologous Chondrocyte Implantation Versus Autologous Matrix-Induced Chondrogenesis: A Randomized Trial Comparing 2 Methods for Repair of Cartilage Defects of the Knee. Orthopaedic Journal of Sports Medicine, 7(9), 232596711986821. https://doi.org/10.1177/2325967119868212
  6. Gowd, A. K., Cvetanovich, G. L., Liu, J. N., Christian, D. R., Cabarcas, B. C., Redondo, M. L., Verma, N. N., Yanke, A. B., & Cole, B. J. (2019). Management of Chondral Lesions of the Knee: Analysis of Trends and Short-Term Complications Using the National Surgical Quality Improvement Program Database. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 35(1), 138–146. https://doi.org/10.1016/j.arthro.2018.07.049.
  7. Yontar, N. S., Aslan, L., Can, A., & Ogut, T. (2019). One step treatment of talus osteochondral lesions with microfracture and cell free hyaluronic acid based scaffold combination. Acta Orthopaedica et Traumatologica Turcica, 53(5), 372–375. https://doi.org/10.1016/j.aott.2019.04.002
  8. Chen, H., Sun, J., Hoemann, C. D., Lascau-Coman, V., Ouyang, W., McKee, M. D., Shive, M. S., & Buschmann, M. D. (2009). Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. Journal of Orthopaedic Research, 27(11), 1432–1438. https://doi.org/10.1002/jor.20905
  9. Behrens, P. (2005). Matrixgekoppelte Mikrofrakturierung. Arthroskopie, 18(3), 193–197. https://doi.org/10.1007/s00142-005-0316-0
  10. Kramer, J., Böhrnsen, F., Lindner, U., Behrens, P., Schlenke, P., & Rohwedel, J. (2006). In vivo matrix-guided human mesenchymal stem cells. Cellular and Molecular Life Sciences, 63(5), 616–626. https://doi.org/10.1007/s00018-005-5527-z
  11. Giannini, S., Buda, R., Ruffilli, A., Cavallo, M., Pagliazzi, G., Bulzamini, M. C., Desando, G., Luciani, D., & Vannini, F. (2013). Arthroscopic autologous chondrocyte implantation in the ankle joint. Knee Surgery, Sports Traumatology, Arthroscopy, 22(6), 1311–1319. https://doi.org/10.1007/s00167-013-2640-7
  12. Park, Y.-B., Ha, C.-W., Rhim, J. H., & Lee, H.-J. (2017). Stem Cell Therapy for Articular Cartilage Repair: Review of the Entity of Cell Populations Used and the Result of the Clinical Application of Each Entity. The American Journal of Sports Medicine, 46(10), 2540–2552. https://doi.org/10.1177/0363546517729152
  13. Zhou, W., Lin, J., Zhao, K., Jin, K., He, Q., Hu, Y., Feng, G., Cai, Y., Xia, C., Liu, H., Shen, W., Hu, X., & Ouyang, H. (2019). Single-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow Origin. The American Journal of Sports Medicine, 47(7), 1722–1733. https://doi.org/10.1177/0363546519848678
  14. Cole, B. J., Haunschild, E. D., Carter, T., Meyer, J., Fortier, L. A., Gilat, R., Mandelbaum, B. R., Scopp, J. M., Mall, N. A., Cunningham, K., Sethi, P. M., & Lee Pace, J. (2021). Clinically Significant Outcomes Following the Treatment of Focal Cartilage Defects of the Knee With Microfracture Augmentation Using Cartilage Allograft Extracellular Matrix: A Multicenter Prospective Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 37(5), 1512–1521. https://doi.org/10.1016/j.arthro.2021.01.043
  15. Drakos, M. C., Eble, S. K., Cabe, T. N., Patel, K., Hansen, O. B., Sofka, C., Fabricant, P. D., & Deland, J. T. (2021). Comparison of Functional and Radiographic Outcomes of Talar Osteochondral Lesions Repaired With Micronized Allogenic Cartilage Extracellular Matrix and Bone Marrow Aspirate Concentrate vs Microfracture. Foot & Ankle International, 42(7), 841–850. https://doi.org/10.1177/1071100720983266
  16. Hansen, O. B., Eble, S. K., Patel, K., Cabe, T. N., Sofka, C., Deland, J. T., & Drakos, M. C. (2021). Comparison of Clinical and Radiographic Outcomes Following Arthroscopic Debridement With Extracellular Matrix Augmentation and Osteochondral Autograft Transplantation for Medium-Size Osteochondral Lesions of the Talus. Foot & Ankle International, 42(6), 689–698. https://doi.org/10.1177/1071100720980020
  17. Allahabadi, S., Johnson, B., Whitney, M., Oji, D., Chou, L., & Lau, B. C. (2021). Short-term outcomes following dehydrated micronized allogenic cartilage versus isolated microfracture for treatment of medial talar osteochondral lesions. Foot and Ankle Surgery. https://doi.org/10.1016/j.fas.2021.07.012
  18. de Girolamo, L., Schönhuber, H., Viganò, M., Bait, C., Quaglia, A., Thiebat, G., & Volpi, P. (2019). Autologous Matrix-Induced Chondrogenesis (AMIC) and AMIC Enhanced by Autologous Concentrated Bone Marrow Aspirate (BMAC) Allow for Stable Clinical and Functional Improvements at up to 9 Years Follow-Up: Results from a Randomized Controlled Study. Journal of Clinical Medicine, 8(3), 392. https://doi.org/10.3390/jcm8030392.
  19. Schagemann, J., Behrens, P., Paech, A., Riepenhof, H., Kienast, B., Mittelstädt, H., & Gille, J. (2018). Mid-term outcome of arthroscopic AMIC for the treatment of articular cartilage defects in the knee joint is equivalent to mini-open procedures. Archives of Orthopaedic and Trauma Surgery, 138(6), 819–825. https://doi.org/10.1007/s00402-018-2887-z
  20. Kaiser, N., Jakob, R. P., Pagenstert, G., Tannast, M., & Petek, D. (2021). Stable clinical long term results after AMIC in the aligned knee. Archives of Orthopaedic and Trauma Surgery, 41 (11), 1845–1854. https://doi.org/10.1007/s00402-020-03564-7
  21. Becher, C., Malahias, M. A., Ali, M. M., Maffulli, N., & Thermann, H. (2018). Arthroscopic microfracture vs. arthroscopic autologous matrix-induced chondrogenesis for the treatment of articular cartilage defects of the talus. Knee Surgery, Sports Traumatology, Arthroscopy, 27(9), 2731–2736. https://doi.org/10.1007/s00167-018-5278-7
  22. Hoburg, A., Leitsch, J. M., Diederichs, G., Lehnigk, R., Perka, C., Becker, R., & Scheffler, S. (2018). Treatment of osteochondral defects with a combination of bone grafting and AMIC technique. Archives of Orthopaedic and Trauma Surgery, 138(8), 1117–1126. https://doi.org/10.1007/s00402-018-2944-7
  23. Migliorini, F., Eschweiler, J., Maffulli, N., Schenker, H., Driessen, A., Rath, B., & Tingart, M. (2021). Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study. Life, 11(3), 244. https://doi.org/10.3390/life11030244
  24. Migliorini, F., Eschweiler, J., Maffulli, N., Schenker, H., Baroncini, A., Tingart, M., & Rath, B. (2021). Autologous Matrix-Induced Chondrogenesis (AMIC) and Microfractures for Focal Chondral Defects of the Knee: A Medium-Term Comparative Study. Life, 11(3), 183. https://doi.org/10.3390/life11030183
  25. Murphy, E. P., Fenelon, C., Egan, C., & Kearns, S. R. (2019). Matrix-associated stem cell transplantation is successful in treating talar osteochondral lesions. Knee Surgery, Sports Traumatology, Arthroscopy, 27 (9), 2737–2743. https://doi.org/10.1007/s00167-019-05452-z
  26. Mardones, R., Giai Via, A., Pipino, G., Jofre, C. M., Muñoz, S., Narvaez, E., & Maffulli, N. (2020). BM-MSCs differentiated to chondrocytes for treatment of full-thickness cartilage defect of the knee. Journal of Orthopaedic Surgery and Research, 15(1). https://doi.org/10.1186/s13018-020-01852-x
  27. Lu, L., Dai, C., Zhang, Z., Du, H., Li, S., Ye, P., Fu, Q., Zhang, L., Wu, X., Dong, Y., Song, Y., Zhao, D., Pang, Y., & Bao, C. (2019). Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Research & Therapy, 10(1). https://doi.org/10.1186/s13287-019-1248-3
  28. Commins, J., Irwin, R., Matuska, A., Goodale, M., Delco, M., & Fortier, L. (2020). Biological Mechanisms for Cartilage Repair Using a BioCartilage Scaffold: Cellular Adhesion/Migration and Bioactive Proteins. CARTILAGE, 13 (1_suppl), 984S–992S, 194760351990080. https://doi.org/10.1177/1947603519900803
  29. Parreno, J., Nabavi Niaki, M., Andrejevic, K., Jiang, A., Wu, P.-h., & Kandel, R. A. (2017). Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture. Journal of Anatomy, 230(2), 234–248. https://doi.org/10.1111/joa.12554
  30. Volz, M., Schaumburger, J., Frick, H., Grifka, J., & Anders, S. (2017). A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. International Orthopaedics, 41(4), 797–804. https://doi.org/10.1007/s00264-016-3391-0
  31. Hunter, D. J., & Bierma-Zeinstra, S. (2019). Osteoarthritis. The Lancet, 393(10182), 1745–1759. https://doi.org/10.1016/s0140-6736(19)30417-9
  32. Han, X., Yang, B., Zou, F., & Sun, J. (2020). Clinical therapeutic efficacy of mesenchymal stem cells derived from adipose or bone marrow for knee osteoarthritis: a meta-analysis of randomized controlled trials. Journal of Comparative Effectiveness Research, 9(5), 361–374. https://doi.org/10.2217/cer-2019-0187
  33. Furuhashi, K., Tsuboi, N., Shimizu, A., Katsuno, T., Kim, H., Saka, Y., Ozaki, T., Sado, Y., Imai, E., Matsuo, S., & Maruyama, S. (2013). Serum-Starved Adipose-Derived Stromal Cells Ameliorate Crescentic GN by Promoting Immunoregulatory Macrophages. Journal of the American Society of Nephrology, 24(4), 587–603. https://doi.org/10.1681/asn.2012030264

How to Cite

Burianov, O. ., Omelchenko, T. ., & Levytskyi, Y. (2023). Surgical techniques for the articular cartilage repair: literature review and meta-analysis. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3-4), 126–137. https://doi.org/10.15674/0030-598720223-4126-137

Issue

Section

DIGESTS AND REVIEWS