Histological features of articular cartilage and bone marrow reparative potential under conditions of coxarthritis in patients with radiographic signs of epiphyseal dysplasia

Authors

  • Igor Huzhevskyi SI «Institute of Traumatology and Orthopedics of the NAMS of Ukraine», Kyiv, Ukraine
  • Sergey Herasymenko SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv, Ukraine
  • Mikhail Poluliakh SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv, Ukraine
  • Andrey Babko SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv, Ukraine
  • Andrey Herasymenko SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv, Ukraine
  • Dmitry Рoluliakh SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv, Ukraine
  • Ninel Diedukh SI «Institute of Gerontology named after D.F. Chebotaryov NAMS of Ukraine», Kyiv, Ukraine https://orcid.org/0000-0003-0307-2328
  • Lesya Panchenko SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv, Ukraine

DOI:

https://doi.org/10.15674/0030-598720223-491-96

Keywords:

Coxarthritis, articular cartilage, bone marrow reparative potential

Abstract

Coxarthritis in patients with radiographic signs of  epiphyseal dysplasia causes disturbances of social adaptation of this patients group at a young age and ensure the relevance of studying the problem of optimizing the orthopaedic treatment of this patients category. Objective. To define the tactics of orthopaedic treatment in such patient category based on study of morphological features of articular cartilage and osteogenic activity of bone marrow stem stromal cells. Materials and Methods. We have clinically examined 68 adult patients having coxarthritis  in the presence of radiological signs of epiphyseal dysplasia. In 52 cases we performed total hip and knee arthroplasty that allowed to obtain articular cartilage fragments for histological study and epiphysis bone fragments for study of reparative potential of the bone tissue. Results. In patients having coxarthritis  that evolves on the ground of epiphyseal dysplasia by histological and cultural studies we have obtained the data as for deep microstructural disorders in joint cartilage matrix organization as a result of modification of collagen mesh in patients having epiphyseal dysplasia. We have identified the fact of significantly increased bone marrow stem cells proliferative potential at significantly decreased quantity of colony forming fibroblast units in spongious volume unit in epiphysis zone in this patients group which indicates a threat of decompensation of reparatory bone potential risk. Conclusions. Pathological factors of increasingly progressing course of osteoarthrosis in the presence of radiological signs of epiphyseal dysplasia are deep microstructural disorders of joint cartilage matrix organization as a result of modification of collagen mesh and consequent changes of epiphysis of the lower limbs form. There is no possibility of prevention and etiological therapy of coxarthritis evolving from epiphyseal dysplasia, meanwhile there is a threat of decompensation of reparatory bone tissue potential in epiphysis zone in this patient category. Therefore, in patients with coxarthritis and radiographic signs of  epiphyseal dysplasia, resistant to the course of conservative treatment, it is advisable do not delay use the method of joint arthroplasty.

Author Biographies

Igor Huzhevskyi, SI «Institute of Traumatology and Orthopedics of the NAMS of Ukraine», Kyiv

MD, PhD in Orthopaedics and Traumatology

Sergey Herasymenko, SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv

MD, Doctor in Traumatology and Orthopaedics

Mikhail Poluliakh, SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv

MD, PhD

Andrey Babko, SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv

MD, PhD

Andrey Herasymenko, SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv

MD, PhD in Orthopaedics and Traumatology

Dmitry Рoluliakh, SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv

MD, PhD in Orthopaedics and Traumatology

Ninel Diedukh, SI «Institute of Gerontology named after D.F. Chebotaryov NAMS of Ukraine», Kyiv

Doctor in Biol. Sci

Lesya Panchenko, SI «Institute of Traumatology and Orthopedics of NAMS of Ukraine», Kyiv

MD, PhD

References

  1. Handa, A., Grigelioniene, G., & Nishimura, G. (2021). Radiologic Features of Type II and Type XI Collagenopathies. RadioGraphics, 41(1), 192–209. https://doi.org/10.1148/rg.2021200075
  2. Gudmann, N. S., & Karsdal, M. A. (2016). Type II Collagen. У Biochemistry of Collagens, Laminins and Elastin (с. 13–20). Elsevier. https://doi.org/10.1016/b978-0-12-809847-9.00002-7 Gregersen P. A. Type II collagen disorders overview / P. A. Gre-gersen, R. Savarirayan // GeneReviews® [Internet]. / Eds. M. P. Adam, H. H. Ardinger, R. A. Pagon [et al.]. — Univer-sity of Washington, Seattle, 2019. — Available from: https://pubmed.ncbi.nlm.nih.gov/31021589/
  3. Mortier, G. R., Cohn, D. H., Cormier‐Daire, V., Hall, C., Krakow, D., Mundlos, S., Nishimura, G., Robertson, S., Sangiorgi, L., Savarirayan, R., Sillence, D., Superti‐Furga, A., Unger, S., & Warman, M. L. (2019). Nosology and classification of genetic skeletal disorders: 2019 revision. American Journal of Medical Genetics Part A, 179(12), 2393–2419. https://doi.org/10.1002/ajmg.a.61366
  4. Jurcă, M. C., Jurcă, S. I., Mirodot, F., Bercea, B., Severin, E. M., Marius, B., & Alexandru Daniel, J. (2021a). Changes in skeletal dysplasia nosology. Romanian Journal of Morphology and Embryology, 62(3), 689–696. https://doi.org/10.47162/rjme.62.3.05
  5. Brill, P. W., Hall, C., Spranger, J. W., Nishimura & Superti-Furga, A. (2018). Bone Dysplasias: An Atlas of Genetic Disorders of Skeletal Development. Oxford University Press, Incorporated.
  6. Anttila, H., Tallqvist, S., Muñoz, M., Leppäjoki-Tiistola, S., Mäkitie, O., & Hiekkala, S. (2021). Towards an ICF-based self-report questionnaire for people with skeletal dysplasia to study health, functioning, disability and accessibility. Orphanet Journal of Rare Diseases, 16(1). https://doi.org/10.1186/s13023-021-01857-7
  7. Hyvönen, H., Anttila, H., Tallqvist, S., Muñoz, M., Leppäjoki-Tiistola, S., Teittinen, A., Mäkitie, O., & Hiekkala, S. (2020). Functioning and equality according to International Classification of Functioning, Disability and Health (ICF) in people with skeletal dysplasia compared to matched control subjects – a cross-sectional survey study. BMC Musculoskeletal Disorders, 21(1). https://doi.org/10.1186/s12891-020-03835-9
  8. Liu, Z., Teng, B., Wu, J., Mori, T., & Lei, M. (2020). Twenty years of lameness: a mystery. Journal of Xiangya Medicine, 5, 16. https://doi.org/10.21037/jxym.2020.03.01
  9. Patel, H., Cichos, K. H., Moon, A. S., McGwin, G., Ponce, B. A., & Ghanem, E. S. (2019). Patients with musculoskeletal dysplasia undergoing total joint arthroplasty are at increased risk of surgical site Infection. Orthopaedics & Traumatology: Surgery & Research, 105(7), 1297–1301. https://doi.org/10.1016/j.otsr.2019.06.013
  10. Rolvien, T., Yorgan, T. A., Kornak, U., Hermans-Borgmeyer, I., Mundlos, S., Schmidt, T., Niemeier, A., Schinke, T., Amling, M., & Oheim, R. (2020). Skeletal deterioration in COL2A1-related spondyloepiphyseal dysplasia occurs prior to osteoarthritis. Osteoarthritis and Cartilage, 28(3), 334–343. https://doi.org/10.1016/j.joca.2019.12.011
  11. Savarirayan, R., Bompadre, V., Bober, M. B., Cho, T.-J., Goldberg, M. J., Hoover-Fong, J., Irving, M., Kamps, S. E., Mackenzie, W. G., Raggio, C., Spencer, S. S., & White, K. K. (2019). Best practice guidelines regarding diagnosis and management of patients with type II collagen disorders. Genetics in Medicine, 21(9), 2070–2080. https://doi.org/10.1038/s41436-019-0446-9
  12. Terhal, P. A., Nievelstein, R. J. A. J., Verver, E. J. J., Topsakal, V., van Dommelen, P., Hoornaert, K., Le Merrer, M., Zankl, A., Simon, M. E. H., Smithson, S. F., Marcelis, C., Kerr, B., Clayton-Smith, J., Kinning, E., Mansour, S., Elmslie, F., Goodwin, L., van der Hout, A. H., Veenstra-Knol, H. E., ... Mortier, G. R. (2015). A study of the clinical and radiological features in a cohort of 93 patients with aCOL2A1mutation causing spondyloepiphyseal dysplasia congenita or a related phenotype. American Journal of Medical Genetics Part A, 167(3), 461–475. https://doi.org/10.1002/ajmg.a.36922
  13. White, K. K., Bompadre, V., Goldberg, M. J., Bober, M. B., Cho, T.-J., Hoover-Fong, J. E., Irving, M., Mackenzie, W. G., Kamps, S. E., Raggio, C., Redding, G. J., Spencer, S. S., Savarirayan, R., & Theroux, M. C. (2017). Best practices in peri-operative management of patients with skeletal dysplasias. American Journal of Medical Genetics Part A, 173(10), 2584–2595. https://doi.org/10.1002/ajmg.a.38357
  14. Memminger, M. K. (2019). Dysplasia spondyloepiphysaria and patella dislocation: a case followed over 10 years. Acta Biomedica, 90 (3), 326–330. https://doi.org/10.23750/abm.v90i3.7247.
  15. Merle, C., Waldstein, W., Lipman, J. D., Kasparek, M. F., & Boettner, F. (2016). One Stage Bilateral Total Hip Arthroplasty in Siblings with Larsen Syndrome. The Open Orthopaedics Journal, 10(1), 569–576. https://doi.org/10.2174/1874325001610010569
  16. Sponer, P., Korbel, M., & Kucera, T. (2021). Total Knee Arthroplasty in Spondyloepiphyseal Dysplasia with Irreducible Congenital Dislocation of the Patella: Case Report and Literature Review. Therapeutics and Clinical Risk Management, Volume 17, 275–283. https://doi.org/10.2147/tcrm.s294876
  17. Nikolenko, V. N., Oganesyan, M. V., Vovkogon, A. D., Cao, Y., Churganova, A. A., Zolotareva, M. A., Achkasov, E. E., Sankova, M. V., Rizaeva, N. A., & Sinelnikov, M. Y. (2020). Morphological signs of connective tissue dysplasia as predictors of frequent post-exercise musculoskeletal disorders. BMC Musculoskeletal Disorders, 21(1). https://doi.org/10.1186/s12891-020-03698-0
  18. Vanlommel, J., Vanlommel, L., Molenaers, B., & Simon, J. P. (2018). Hybrid total hip arthroplasty for multiple epiphyseal dysplasia. Orthopaedics & Traumatology: Surgery & Research, 104(3), 301–305. https://doi.org/10.1016/j.otsr.2017.11.014
  19. Wyles, C. C., Panos, J. A., Houdek, M. T., Trousdale, R. T., Berry, D. J., & Taunton, M. J. (2019). Total Hip Arthroplasty Reduces Pain and Improves Function in Patients With Spondyloepiphyseal Dysplasia: A Long-Term Outcome Study of 50 Cases. The Journal of Arthroplasty, 34(3), 517–521. https://doi.org/10.1016/j.arth.2018.10.028
  20. Ke, Y., Zhang, Q., Ma, Y. Q., Li, R. J., Tao, K., Gui, X. G., Li, K. P., Zhang, H., Lin, J. H. (2021). Short-term outcomes of total hip arthroplasty in the treat-ment of Tönnis grade 3 hip osteoarthritis in patients with spondyloepiphyseal dysplasia. Journal of Peking University (Health Sciences), 53 (1), 175–182. https://doi.org/10.19723/j.issn.1671-167X.2021.01.026.
  21. Rainer, W., Shirley, M. B., Trousdale, R. T., Shaughnessy, W. J. (2021). The open triradiate cartilage: how young is too young for total hip arthroplasty? Journal of Pediatric Orthopedics, 41 (9), e793–e799. https://doi.org/10.1097/BPO.0000000000001940.
  22. Astakhova, V. S. (2000). Human’s osteogenic bone marrow progenitor cells. Kyiv : Phoenix.
  23. Gaіko, G. V., Panchenko, L. M., Kalashnikov, O. V. (2012). Relationship of clonogenic activity of bone marrow stem stromal cells and the course of idiopathic coxarthrosis. Herald of Orthopaedics, Traumatology and Prosthetics, 2, 30–33.

How to Cite

Huzhevskyi, I. ., Herasymenko, S. ., Poluliakh, M. ., Babko, A. ., Herasymenko, A. ., Рoluliakh D. ., Diedukh, N. ., & Panchenko, L. . (2023). Histological features of articular cartilage and bone marrow reparative potential under conditions of coxarthritis in patients with radiographic signs of epiphyseal dysplasia. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3-4), 91–96. https://doi.org/10.15674/0030-598720223-491-96

Issue

Section

ORIGINAL ARTICLES