Analysis of the relationship between degenerative changes in the joint under conditions of hip osteoarthritis with hemostasis disorders in patients based on the results of a biochemical study

Authors

  • Stanislav Bondarenko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0003-2463-5919
  • Volodymyr Filipenko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-5698-2726
  • Dmytro Morozenko National University оf Pharmacy, Kharkiv. Ukraine, Ukraine
  • Frieda Leontyeva Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
  • Oleksandr Vysotskyi Kherson Regional Clinical Hospital. Ukraine, Ukraine
  • Valentyna Maltseva Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-9184-0536

DOI:

https://doi.org/10.15674/0030-598720223-462-67

Keywords:

fibrinolysis, Hip replacement, fibrinogen, chondroitin sulfates

Abstract

Venous thromboembolism is one of the serious complications that occurs after total hip arthroplasty (THA). Among the risk factors may be the presence of disorders of hemostasis and fibrinolysis in patients before surgical intervention. The aim of study to identify the influence of hip osteoarthritis  III–IV stages on the hemostasis of patients before performing THA. Methods. A prospective study was conducted with the participation of 60 patients with  hip ostheoarthritis III–IV stages and 30 healthy volunteers (control group). Blood and urine samples were obtained from all participants (in patients — one day before THA). Prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen, fibrinolytic activity (FA), soluble fibrin monomer complexes (SFMCs), glycoproteins, sialic acids, chondroitin sulfates (CS), acid and alkaline phosphatases, β lipoproteins were determined in the blood; in urine — oxyproline, uronic acids, Ca and P. The Pearson correlation coefficient (r) was calculated to determine the relationship between markers of hemostasis and connective tissue metabolism. Results. Compared with the control group, the level of alkaline phosphatase in the blood of patients with hip ostheoarthritis level of glycoproteins (r = 0.97; p < 0.05), cholesterol (r = 0.91; p < 0.05); the level of SFMCs was correlated with the level of glycoproteins (r = 0.99; p < 0.05), CS (r = 0.94; p < 0.05). Conclusions. In patients with hip ostheoarthritis III-IV stages the levels of connective tissue markers (glycoproteins, CS) correlate with the levels of hemostasis markers (fibrinogen, SFMCs). This is of clinical significance for the timely prevention of the development of thromboembolic complications in patients to whom THA is recommended.

Author Biographies

Stanislav Bondarenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, DMSi in Traumatology and Orthopaedics

Volodymyr Filipenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Orthopaedics and Traumatology

Dmytro Morozenko, National University оf Pharmacy, Kharkiv. Ukraine

Doctor of Veter. Sci.

Frieda Leontyeva, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Biol. Sci

Oleksandr Vysotskyi, Kherson Regional Clinical Hospital. Ukraine

MD

Valentyna Maltseva, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

Phd in Biol. Sci.

References

  1. Santana, D. C., Emara, A. K., Orr, M. N., Klika, A. K., Higuera, C. A., Krebs, V. E., Molloy, R. M., & Piuzzi, N. S. (2020). An Update on Venous Thromboembolism Rates and Prophylaxis in Hip and Knee Arthroplasty in 2020. Medicina, 56(9), 416. https://doi.org/10.3390/medicina56090416
  2. Kim, J.-S. (2018). Deep Vein Thrombosis Prophylaxis after Total Hip Arthroplasty in Asian Patients. Hip & Pelvis, 30(4), 197. https://doi.org/10.5371/hp.2018.30.4.197
  3. Falck-Ytter, Y., Francis, C. W., Johanson, N. A., Curley, C., Dahl, O. E., Schulman, S., Ortel, T. L., Pauker, S. G., & Colwell, C. W. (2012). Prevention of VTE in Orthopedic Surgery Patients. Chest, 141(2), e278S-e325S. https://doi.org/10.1378/chest.11-2404
  4. Highcock, A. J., As-Sultany, M., Finley, R., & Donnachie, N. J. (2020). A Prospective Cohort Comparative Study of Rivaroxaban, Dabigatran, and Apixaban Oral Thromboprophylaxis in 2431 Hip and Knee Arthroplasty Patients: Primary Efficacy Outcomes and Safety Profile. The Journal of Arthroplasty, 35(11), 3093–3098. https://doi.org/10.1016/j.arth.2020.06.032
  5. Bawa, H., Weick, J. W., Dirschl, D. R., & Luu, H. H. (2018). Trends in Deep Vein Thrombosis Prophylaxis and Deep Vein Thrombosis Rates After Total Hip and Knee Arthroplasty. Journal of the American Academy of Orthopaedic Surgeons, 26(19), 698–705. https://doi.org/10.5435/jaaos-d-17-00235
  6. Kim, Y., Park, Y., Joo, Y., Kim, S. Y., & Kim, J. (2018). The role of platelet hyperreactivity in venous thromboembolism after total knee arthroplasty in elderly population without pharmacologic prophylaxis: A single-center study. International Journal of Laboratory Hematology, 41(1), 102–108. https://doi.org/10.1111/ijlh.12932
  7. Onishi, A., St Ange, K., Dordick, J. S., Linhardt, R. J. (2016). Heparin and anticoagulation. Frontiers in Bioscience, 21 (7), 1372–1392. https://doi.org/10.2741/4462.
  8. Lima, M., Rudd, T., & Yates, E. (2017). New Applications of Heparin and Other Glycosaminoglycans. Molecules, 22(5), 749. https://doi.org/10.3390/molecules22050749
  9. Chow, Y. Y., & Chin, K.-Y. (2020). The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediators of Inflammation, 2020, 1–19. https://doi.org/10.1155/2020/8293921
  10. Alunno, A., Falcinelli, E., Luccioli, F., Petito, E., Bartoloni, E., Momi, S., Mirabelli, G., Mancini, G., Gerli, R., & Gresele, P. (2017). Platelets Contribute to the Accumulation of Matrix Metalloproteinase Type 2 in Synovial Fluid in Osteoarthritis. Thrombosis and Haemostasis, 117(11), 2116–2124. https://doi.org/10.1160/th17-06-0379
  11. Kwon, Y.-J., Koh, I.-H., Chung, K., Lee, Y.-J., & Kim, H.-S. (2020). Association between platelet count and osteoarthritis in women older than 50 years. Therapeutic Advances in Musculoskeletal Disease, 12, 1759720X2091286. https://doi.org/10.1177/1759720x20912861
  12. Craven, S., Dewar, L., Yang, X., Ginsberg, J., & Ofosu, F. (2007). Altered regulation of in-vivo coagulation in orthopedic patients prior to knee or hip replacement surgery. Blood Coagulation & Fibrinolysis, 18(3), 219–225. https://doi.org/10.1097/01.mbc.0000264704.90039.5d
  13. Guler, N., Burleson, A., Syed, D., Banos, A., Hopkinson, W., Hoppensteadt, D., Rees, H., & Fareed, J. (2015). Fibrinolytic Dysregulation in Total Joint Arthroplasty Patients. Clinical and Applied Thrombosis/Hemostasis, 22(4), 372–376. https://doi.org/10.1177/1076029615597060
  14. Wanderling, C., Liles, J., Finkler, E., Carlsgaard, P., Hopkinson, W., Guler, N., Hoppensteadt, D., & Fareed, J. (2017). Dysregulation of Tissue Factor, Thrombin-Activatable Fibrinolysis Inhibitor, and Fibrinogen in Patients Undergoing Total Joint Arthroplasty. Clinical and Applied Thrombosis/Hemostasis, 23(8), 967–972. https://doi.org/10.1177/1076029617700998
  15. Morozenko, D. V., Leontieva, F. S. (2016). Research methods markers of connective tissue metabolism in modern clinical and experimental medi-cine [Metody doslidzhennya markeriv metabolizmu spoluch-noyi tkanyny u klinichniy ta eksperymentalʹniy medytsyni]. Molodyy vchenyy, No. 2 (29), 168–172. (in Ukrainian)
  16. Polasek J. (2009). Platelet lysosomal acid phosphatase enzyme activ-ity as a marker of platelet procoagulant activity. Blood Transfusion, 7 (2), 155‒156. https://doi.org/10.2450/2008.0053-08.
  17. Liem, Y., Judge, A., Kirwan, J., Ourradi, K., Li, Y., & Sharif, M. (2020). Multivariable logistic and linear regression models for identification of clinically useful biomarkers for osteoarthritis. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68077-0
  18. Kruisbergen, N., van den Bosch, M., Blom, A., & van Lent, P. (2019). The relation between the inflammatory status of human end stage OA synovium and levels of low density lipoprotein. Osteoarthritis and Cartilage, 27, S88—S89. https://doi.org/10.1016/j.joca.2019.02.125
  19. de Munter, W., van der Kraan, P. M., van den Berg, W. B., & van Lent, P. L. E. M. (2016). High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis? Rheumatology, 55(1), 16–24. https://doi.org/10.1093/rheumatology/kev270
  20. Badimon, L., & Vilahur, G. (2012). LDL-cholesterol versus HDL-cholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos. Annals of the New York Academy of Sciences, 1254(1), 18–32. https://doi.org/10.1111/j.1749-6632.2012.06480.x
  21. Burbul, M., Tomaszewski, D., Rogalska, A., Gawroński, K., Literacki, S., & Waśko, M. (2021). Thrombotic activation before and after total hip arthroplasty. A prospective cohort study. BMC Musculoskeletal Disorders, 22(1). https://doi.org/10.1186/s12891-021-04566-1
  22. Mitani, G., Takagaki, T., Hamahashi, K., Serigano, K., Nakamura, Y., Sato, M., & Mochida, J. (2015). Associations between venous thromboembolism onset, D-dimer, and soluble fibrin monomer complex after total knee arthroplasty. Journal of Orthopaedic Surgery and Research, 10(1). https://doi.org/10.1186/s13018-015-0315-4
  23. Watanabe, H., Madoiwa, S., Sekiya, H., Nagahama, Y., Matsuura, S., Kariya, Y., Ohmori, T., Mimuro, J., Hoshino, Y., Hayasaka, S., & Sakata, Y. (2011). Predictive blood coagulation markers for early diagnosis of venous thromboembolism after total knee joint replacement. Thrombosis Research, 128(6), e137-e143. https://doi.org/10.1016/j.thromres.2011.07.030
  24. Luyendyk, J. P., Schoenecker, J. G., & Flick, M. J. (2019). The multifaceted role of fibrinogen in tissue injury and inflammation. Blood, 133(6), 511–520. https://doi.org/10.1182/blood-2018-07-818211
  25. Lin, H., Xu, L., Yu, S., Hong, W., Huang, M., & Xu, P. (2020). Therapeutics targeting the fibrinolytic system. Experimental & Molecular Medicine, 52(3), 367–379. https://doi.org/10.1038/s12276-020-0397-x
  26. Moritake, A., Kawao, N., Okada, K., Ishida, M., Tatsumi, K., Matsuo, O., Akagi, M., & Kaji, H. (2018). Plasminogen activator inhibitor-1 is involved in interleukin-1β-induced matrix metalloproteinase expression in murine chondrocytes. Modern Rheumatology, 29(6), 959–963. https://doi.org/10.1080/14397595.2018.1525018
  27. Ritchie, S. C., Würtz, P., Nath, A. P., Abraham, G., Havulinna, A. S., Fearnley, L. G., Sarin, A.-P., Kangas, A. J., Soininen, P., Aalto, K., Seppälä, I., Raitoharju, E., Salmi, M., Maksimow, M., Männistö, S., Kähönen, M., Juonala, M., Ripatti, S., Lehtimäki, T., ... Inouye, M. (2015). The Biomarker GlycA Is Associated with Chronic Inflammation and Predicts Long-Term Risk of Severe Infection. Cell Systems, 1(4), 293–301. https://doi.org/10.1016/j.cels.2015.09.007
  28. Yasuda, S., Atsumi, T., Ieko, M., & Koike, T. (2004). β2-glycoprotein I, anti-β2-glycoprotein I, and fibrinolysis. Thrombosis Research, 114(5-6), 461–465. https://doi.org/10.1016/j.thromres.2004.07.013
  29. Baker, S. K., & Strickland, S. (2020). A critical role for plasminogen in inflammation. Journal of Experimental Medicine, 217(4). https://doi.org/10.1084/jem.20191865

How to Cite

Bondarenko, S. ., Filipenko, V. ., Morozenko, D. ., Leontyeva, F. ., Vysotskyi, O. ., & Maltseva, V. . (2023). Analysis of the relationship between degenerative changes in the joint under conditions of hip osteoarthritis with hemostasis disorders in patients based on the results of a biochemical study. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3-4), 62–67. https://doi.org/10.15674/0030-598720223-462-67

Issue

Section

ORIGINAL ARTICLES