Analysis of the relationship between degenerative changes in the joint under conditions of hip osteoarthritis with hemostasis disorders in patients based on the results of a biochemical study
DOI:
https://doi.org/10.15674/0030-598720223-462-67Keywords:
fibrinolysis, Hip replacement, fibrinogen, chondroitin sulfatesAbstract
Venous thromboembolism is one of the serious complications that occurs after total hip arthroplasty (THA). Among the risk factors may be the presence of disorders of hemostasis and fibrinolysis in patients before surgical intervention. The aim of study to identify the influence of hip osteoarthritis III–IV stages on the hemostasis of patients before performing THA. Methods. A prospective study was conducted with the participation of 60 patients with hip ostheoarthritis III–IV stages and 30 healthy volunteers (control group). Blood and urine samples were obtained from all participants (in patients — one day before THA). Prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen, fibrinolytic activity (FA), soluble fibrin monomer complexes (SFMCs), glycoproteins, sialic acids, chondroitin sulfates (CS), acid and alkaline phosphatases, β lipoproteins were determined in the blood; in urine — oxyproline, uronic acids, Ca and P. The Pearson correlation coefficient (r) was calculated to determine the relationship between markers of hemostasis and connective tissue metabolism. Results. Compared with the control group, the level of alkaline phosphatase in the blood of patients with hip ostheoarthritis level of glycoproteins (r = 0.97; p < 0.05), cholesterol (r = 0.91; p < 0.05); the level of SFMCs was correlated with the level of glycoproteins (r = 0.99; p < 0.05), CS (r = 0.94; p < 0.05). Conclusions. In patients with hip ostheoarthritis III-IV stages the levels of connective tissue markers (glycoproteins, CS) correlate with the levels of hemostasis markers (fibrinogen, SFMCs). This is of clinical significance for the timely prevention of the development of thromboembolic complications in patients to whom THA is recommended.
References
- Santana, D. C., Emara, A. K., Orr, M. N., Klika, A. K., Higuera, C. A., Krebs, V. E., Molloy, R. M., & Piuzzi, N. S. (2020). An Update on Venous Thromboembolism Rates and Prophylaxis in Hip and Knee Arthroplasty in 2020. Medicina, 56(9), 416. https://doi.org/10.3390/medicina56090416
- Kim, J.-S. (2018). Deep Vein Thrombosis Prophylaxis after Total Hip Arthroplasty in Asian Patients. Hip & Pelvis, 30(4), 197. https://doi.org/10.5371/hp.2018.30.4.197
- Falck-Ytter, Y., Francis, C. W., Johanson, N. A., Curley, C., Dahl, O. E., Schulman, S., Ortel, T. L., Pauker, S. G., & Colwell, C. W. (2012). Prevention of VTE in Orthopedic Surgery Patients. Chest, 141(2), e278S-e325S. https://doi.org/10.1378/chest.11-2404
- Highcock, A. J., As-Sultany, M., Finley, R., & Donnachie, N. J. (2020). A Prospective Cohort Comparative Study of Rivaroxaban, Dabigatran, and Apixaban Oral Thromboprophylaxis in 2431 Hip and Knee Arthroplasty Patients: Primary Efficacy Outcomes and Safety Profile. The Journal of Arthroplasty, 35(11), 3093–3098. https://doi.org/10.1016/j.arth.2020.06.032
- Bawa, H., Weick, J. W., Dirschl, D. R., & Luu, H. H. (2018). Trends in Deep Vein Thrombosis Prophylaxis and Deep Vein Thrombosis Rates After Total Hip and Knee Arthroplasty. Journal of the American Academy of Orthopaedic Surgeons, 26(19), 698–705. https://doi.org/10.5435/jaaos-d-17-00235
- Kim, Y., Park, Y., Joo, Y., Kim, S. Y., & Kim, J. (2018). The role of platelet hyperreactivity in venous thromboembolism after total knee arthroplasty in elderly population without pharmacologic prophylaxis: A single-center study. International Journal of Laboratory Hematology, 41(1), 102–108. https://doi.org/10.1111/ijlh.12932
- Onishi, A., St Ange, K., Dordick, J. S., Linhardt, R. J. (2016). Heparin and anticoagulation. Frontiers in Bioscience, 21 (7), 1372–1392. https://doi.org/10.2741/4462.
- Lima, M., Rudd, T., & Yates, E. (2017). New Applications of Heparin and Other Glycosaminoglycans. Molecules, 22(5), 749. https://doi.org/10.3390/molecules22050749
- Chow, Y. Y., & Chin, K.-Y. (2020). The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediators of Inflammation, 2020, 1–19. https://doi.org/10.1155/2020/8293921
- Alunno, A., Falcinelli, E., Luccioli, F., Petito, E., Bartoloni, E., Momi, S., Mirabelli, G., Mancini, G., Gerli, R., & Gresele, P. (2017). Platelets Contribute to the Accumulation of Matrix Metalloproteinase Type 2 in Synovial Fluid in Osteoarthritis. Thrombosis and Haemostasis, 117(11), 2116–2124. https://doi.org/10.1160/th17-06-0379
- Kwon, Y.-J., Koh, I.-H., Chung, K., Lee, Y.-J., & Kim, H.-S. (2020). Association between platelet count and osteoarthritis in women older than 50 years. Therapeutic Advances in Musculoskeletal Disease, 12, 1759720X2091286. https://doi.org/10.1177/1759720x20912861
- Craven, S., Dewar, L., Yang, X., Ginsberg, J., & Ofosu, F. (2007). Altered regulation of in-vivo coagulation in orthopedic patients prior to knee or hip replacement surgery. Blood Coagulation & Fibrinolysis, 18(3), 219–225. https://doi.org/10.1097/01.mbc.0000264704.90039.5d
- Guler, N., Burleson, A., Syed, D., Banos, A., Hopkinson, W., Hoppensteadt, D., Rees, H., & Fareed, J. (2015). Fibrinolytic Dysregulation in Total Joint Arthroplasty Patients. Clinical and Applied Thrombosis/Hemostasis, 22(4), 372–376. https://doi.org/10.1177/1076029615597060
- Wanderling, C., Liles, J., Finkler, E., Carlsgaard, P., Hopkinson, W., Guler, N., Hoppensteadt, D., & Fareed, J. (2017). Dysregulation of Tissue Factor, Thrombin-Activatable Fibrinolysis Inhibitor, and Fibrinogen in Patients Undergoing Total Joint Arthroplasty. Clinical and Applied Thrombosis/Hemostasis, 23(8), 967–972. https://doi.org/10.1177/1076029617700998
- Morozenko, D. V., Leontieva, F. S. (2016). Research methods markers of connective tissue metabolism in modern clinical and experimental medi-cine [Metody doslidzhennya markeriv metabolizmu spoluch-noyi tkanyny u klinichniy ta eksperymentalʹniy medytsyni]. Molodyy vchenyy, No. 2 (29), 168–172. (in Ukrainian)
- Polasek J. (2009). Platelet lysosomal acid phosphatase enzyme activ-ity as a marker of platelet procoagulant activity. Blood Transfusion, 7 (2), 155‒156. https://doi.org/10.2450/2008.0053-08.
- Liem, Y., Judge, A., Kirwan, J., Ourradi, K., Li, Y., & Sharif, M. (2020). Multivariable logistic and linear regression models for identification of clinically useful biomarkers for osteoarthritis. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68077-0
- Kruisbergen, N., van den Bosch, M., Blom, A., & van Lent, P. (2019). The relation between the inflammatory status of human end stage OA synovium and levels of low density lipoprotein. Osteoarthritis and Cartilage, 27, S88—S89. https://doi.org/10.1016/j.joca.2019.02.125
- de Munter, W., van der Kraan, P. M., van den Berg, W. B., & van Lent, P. L. E. M. (2016). High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis? Rheumatology, 55(1), 16–24. https://doi.org/10.1093/rheumatology/kev270
- Badimon, L., & Vilahur, G. (2012). LDL-cholesterol versus HDL-cholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos. Annals of the New York Academy of Sciences, 1254(1), 18–32. https://doi.org/10.1111/j.1749-6632.2012.06480.x
- Burbul, M., Tomaszewski, D., Rogalska, A., Gawroński, K., Literacki, S., & Waśko, M. (2021). Thrombotic activation before and after total hip arthroplasty. A prospective cohort study. BMC Musculoskeletal Disorders, 22(1). https://doi.org/10.1186/s12891-021-04566-1
- Mitani, G., Takagaki, T., Hamahashi, K., Serigano, K., Nakamura, Y., Sato, M., & Mochida, J. (2015). Associations between venous thromboembolism onset, D-dimer, and soluble fibrin monomer complex after total knee arthroplasty. Journal of Orthopaedic Surgery and Research, 10(1). https://doi.org/10.1186/s13018-015-0315-4
- Watanabe, H., Madoiwa, S., Sekiya, H., Nagahama, Y., Matsuura, S., Kariya, Y., Ohmori, T., Mimuro, J., Hoshino, Y., Hayasaka, S., & Sakata, Y. (2011). Predictive blood coagulation markers for early diagnosis of venous thromboembolism after total knee joint replacement. Thrombosis Research, 128(6), e137-e143. https://doi.org/10.1016/j.thromres.2011.07.030
- Luyendyk, J. P., Schoenecker, J. G., & Flick, M. J. (2019). The multifaceted role of fibrinogen in tissue injury and inflammation. Blood, 133(6), 511–520. https://doi.org/10.1182/blood-2018-07-818211
- Lin, H., Xu, L., Yu, S., Hong, W., Huang, M., & Xu, P. (2020). Therapeutics targeting the fibrinolytic system. Experimental & Molecular Medicine, 52(3), 367–379. https://doi.org/10.1038/s12276-020-0397-x
- Moritake, A., Kawao, N., Okada, K., Ishida, M., Tatsumi, K., Matsuo, O., Akagi, M., & Kaji, H. (2018). Plasminogen activator inhibitor-1 is involved in interleukin-1β-induced matrix metalloproteinase expression in murine chondrocytes. Modern Rheumatology, 29(6), 959–963. https://doi.org/10.1080/14397595.2018.1525018
- Ritchie, S. C., Würtz, P., Nath, A. P., Abraham, G., Havulinna, A. S., Fearnley, L. G., Sarin, A.-P., Kangas, A. J., Soininen, P., Aalto, K., Seppälä, I., Raitoharju, E., Salmi, M., Maksimow, M., Männistö, S., Kähönen, M., Juonala, M., Ripatti, S., Lehtimäki, T., ... Inouye, M. (2015). The Biomarker GlycA Is Associated with Chronic Inflammation and Predicts Long-Term Risk of Severe Infection. Cell Systems, 1(4), 293–301. https://doi.org/10.1016/j.cels.2015.09.007
- Yasuda, S., Atsumi, T., Ieko, M., & Koike, T. (2004). β2-glycoprotein I, anti-β2-glycoprotein I, and fibrinolysis. Thrombosis Research, 114(5-6), 461–465. https://doi.org/10.1016/j.thromres.2004.07.013
- Baker, S. K., & Strickland, S. (2020). A critical role for plasminogen in inflammation. Journal of Experimental Medicine, 217(4). https://doi.org/10.1084/jem.20191865
Downloads
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).