Conceptual model of the process of formation of immobilization contractures

Authors

  • Olexiy Tyazhelov Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-0534-0528
  • Ayham Adli Mohammad Khasawneh National Pirogov Memorial Medical University, Vinnytsya. Ukraine, Ukraine
  • Olena Karpinska Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-1482-7733
  • Mykhaylo Karpinsky Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-3004-2610
  • Marianna Bitsadze Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine

DOI:

https://doi.org/10.15674/0030-598720223-452-61

Keywords:

Joint immobilization, contracture, joint structure, biosynthesis, conceptual modeling

Abstract

Contractures — limitation of passive movements in the joint — are a fairly frequent complication after immobilization or limitation of mobility and loading of the limb due to injuries, but the exact cause of their formation has not been clarified. Objective. Based on the meta-analysis of the results of experimental modeling and clinical studies of immobilization contractures, create a conceptual model of their formation. Methods. Literature sources from scientific bases were analyzed: Cochrane Library, Scopus, National Library of Medicine, ReLAB-HS Rehabilitation Resources Repository, Mendeley Reference Manager, The Physiological Society library, Google Scholar. Results. A conceptual model of the development of contractures was created. It is shown that immobilization of the joint of the injured limb blocks the execution of the signal of motor impulses. The lack of movement in the joint leads to a decrease in muscle strength and a slowdown in blood circulation. These processes are interrelated: hypotonia of the muscle is due to the restriction of nutrition through the blood supply, and the lack of contractile activity of the muscles leads to the rearrangement of the blood vessels. Articular cartilage is nourished through the subchondral bone and due to osmosis from the synovial fluid during movements. The lack of movement limits nutrition, protein synthesis is disrupted, the surface of the cartilage, synovial membrane and fluid begins to be rebuilt, the joint capsule, ligaments, and tendons thicken. At the same time, the structure of the muscles changes, they shorten and become denser. With long-term immobilization, degenerative processes in the tissues of the joint worsen its general condition, which can eventually lead to complete immobilization. Conclusions. The created conceptual model of the formation of immobilization contractures of joints takes into account the morphological changes of tissues as a result of immobilization. Immobilization affects all components of the joint and adjacent tissues from the first days, the changes progress over time. The use of the model will allow the development of a system of treatment measures to prevent the development of contractures.

Author Biographies

Olexiy Tyazhelov, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Orthopaedics and Traumatology

Ayham Adli Mohammad Khasawneh, National Pirogov Memorial Medical University, Vinnytsya. Ukraine

MD

References

  1. https://compendium.com.ua/uk/clinical-guidelines-uk/osteoartroz-praktichna-nastanova/glava-3-budova-sinovialnih-suglobiv/
  2. Spuzyak, M. I. (1988). X-ray diagnostics of endocrine osteopathies [Rent-genodiagnostika endokrinnykh osteopatiy]. Kyiv: Zdorov'ya.
  3. Poole, A. R., Kojima, T., Yasuda, T., Mwale, F., Kobayashi, M., & Laverty, S. (2001). Composition and Structure of Articular Cartilage. Clinical Orthopaedics and Related Research, 391, S26—S33. https://doi.org/10.1097/00003086-200110001-00004
  4. Stockwell, R. A. (1967). The lipid and glycogen content of rabbit articular hyaline and non-articular hyaline cartilage. Journal of Anatomy, 102 (Pt 1), 87‒94.
  5. Huber, M., Trattnig, S., Lintner, F. (2000). Anatomy, biochemistry, and physiology of articular cartilage. Investigative Radiology, 35 (10), 573‒80. https://doi.org/10.1097/00004424-200010000-00003
  6. Alford, J. W., & Cole, B. J. (2005). Cartilage Restoration, Part 1. The American Journal of Sports Medicine, 33(2), 295–306. https://doi.org/10.1177/0363546504273510
  7. Iannotti J. P. Physiology / J. P. Iannotti, R. D. Parker // Netter Collection of Medical Illustrations: Musculoskeletal System, Part III — Biology and Systemic Diseases. — 1991. — P. 25‒66.
  8. Boos, M. A., Lamandé, S. R., & Stok, K. S. (2022). Multiscale Strain Transfer in Cartilage. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.795522
  9. Coleman, J. L., Widmyer, M. R., Leddy, H. A., Utturkar, G. M., Spritzer, C. E., Moorman, C. T., Guilak, F., & DeFrate, L. E. (2013). Diurnal variations in articular cartilage thickness and strain in the human knee. Journal of Biomechanics, 46(3), 541–547. https://doi.org/10.1016/j.jbiomech.2012.09.013
  10. Eckstein, F., Tieschky, M., Faber, S., Englmeier, K.-H., & Reiser, M. (1999). Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anatomy and Embryology, 200(4), 419–424. https://doi.org/10.1007/s004290050291
  11. Lu, X. L., Mow, V. C., & Guo, X. E. (2009). Proteoglycans and Mechanical Behavior of Condylar Cartilage. Journal of Dental Research, 88(3), 244–248. https://doi.org/10.1177/0022034508330432
  12. Wong, M., & Carter, D. R. (2003). Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone, 33(1), 1–13. https://doi.org/10.1016/s8756-3282(03)00083-8
  13. Carballo, C. B., Nakagawa, Y., Sekiya, I., & Rodeo, S. A. (2017). Basic Science of Articular Cartilage. Clinics in Sports Medicine, 36(3), 413–425. https://doi.org/10.1016/j.csm.2017.02.001
  14. Lee, R. B., Wilkins, R. J., Razaq, S., Urban, J. P. (2002). The effect of mechanical stress on cartilage energy metabolism. Biorheo-logy, 39 (1‒2), 133‒143.
  15. Kuettner, K. E., Thonar, E. J.‒M. A. (1998). Cartilage integrity and homeostasis. In P. Dieppe, J. Klip-pel (eds). Rheumatology (pp. 8.6.1‒8.6.13). London: Mosby‒Wolfe.
  16. Gubsky Yu. I. (2000). Biological chemistry: Textbook [Biolohichna khimiya: Pidruchnyk]. Kyiv–Ternopil : Ukrmedknyga. (in Ukrainian)
  17. Behrens, F., Kraft, E. L., & Oegema, T. R. (1989). Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. Journal of Orthopaedic Research, 7(3), 335–343. https://doi.org/10.1002/jor.1100070305
  18. Nomura, M., Sakitani, N., Iwasawa, H., Kohara, Y., Takano, S., Wakimoto, Y., Kuroki, H., & Moriyama, H. (2017). Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Osteoarthritis and Cartilage, 25(5), 727–736. https://doi.org/10.1016/j.joca.2016.11.013
  19. Säämänen, A.-M., Tammi, M., Jurvelin, J., Kiviranta, I., & Helminen, H. J. (1990). Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint. Journal of Orthopaedic Research, 8(6), 863–873. https://doi.org/10.1002/jor.1100080612
  20. Vincent, T. L., & Wann, A. K. T. (2018). Mechanoadaptation: articular cartilage through thick and thin. The Journal of Physiology, 597(5), 1271–1281. https://doi.org/10.1113/jp275451
  21. Fukuoka, H., Nishimura, Y., Haruna, M. [et al.] (1997). Effect of bed rest immobilization on metabolic turnover of bone and bone mineral density. Journal of Gravitational Physiology, 4 (1), S75‒S81.
  22. Ohshima, H., Mukai, C. (2008). [Bone metabolism in human space flight and bed rest study]. Clin Calcium, 18 (9), 1245‒1253. (in Japanese).
  23. Kovalenko, V. M., Bortkevich, O. P. (2010). Osteoarthrosis. Practical instruction. Kyiv : MORION.
  24. Nasu, H., Nimura, A., Sugiura, S., Fujishiro, H., Koga, H., & Akita, K. (2017). An anatomic study on the attachment of the joint capsule to the tibia in the lateral side of the knee. Surgical and Radiologic Anatomy, 40(5), 499–506. https://doi.org/10.1007/s00276-017-1942-8
  25. Evans, E. B., Eggers, G. W. N., Butler, J. K., & Blumel, J. (1960). Experimental Immobilization and Remobilization of Rat Knee Joints. The Journal of Bone & Joint Surgery, 42(5), 737–758. https://doi.org/10.2106/00004623-196042050-00001
  26. THAXTER, T. H., MANN, R. A., & ANDERSON, C. E. (1965). Degeneration of Immobilized Knee Joints in Rats. The Journal of Bone & Joint Surgery, 47(3), 567–585. https://doi.org/10.2106/00004623-196547030-00017
  27. Sasabe, R., Sakamoto, J., Goto, K., Honda, Y., Kataoka, H., Nakano, J., Origuchi, T., Endo, D., Koji, T., & Okita, M. (2017). Effects of joint immobilization on changes in myofibroblasts and collagen in the rat knee contracture model. Journal of Orthopaedic Research, 35(9), 1998–2006. https://doi.org/10.1002/jor.23498
  28. Sotobayashi, D., Kawahata, H., Anada, N., Ogihara, T., Morishita, R., & Aoki, M. (2016). Therapeutic effect of intra-articular injection of ribbon-type decoy oligonucleotides for hypoxia inducible factor-1 on joint contracture in an immobilized knee animal model. The Journal of Gene Medicine, 18(8), 180–192. https://doi.org/10.1002/jgm.2891
  29. Amiel, D., Akeson, W. H., Harwood, F. L., & Mechanic, G. L. (1980). The Effect of Immobilization on the Types of Collagen Synthesized in Periarticular Connective Tissue. Connective Tissue Research, 8(1), 27–32. https://doi.org/10.3109/03008208009152118
  30. Kelley's textbook of rheumatology / Eds. G. S. Firestein, R. C. Budd, S. E. Gabrie [et al.]. — 11th edition. — Elsevier, 2021. — 2400 p.
  31. Vandenabeele, F., Bari, C. D., Moreels, M., Lambrichts, I., Dell’Accio, F., Lippens, P. L., & Luyten, F. P. (2003). Morphological and immunocytochemical characterization of cultured fibroblast-like cells derived from adult human synovial membrane. Archives of Histology and Cytology, 66(2), 145–153. https://doi.org/10.1679/aohc.66.145
  32. Bobzin, L., Roberts, R. R., Chen, H.-J., Crump, J. G., & Merrill, A. E. (2021). Development and maintenance of tendons and ligaments. Development, 148(8). https://doi.org/10.1242/dev.186916
  33. Benjamin, M., Kaiser, E., & Milz, S. (2008). Structure-function relationships in tendons: a review. Journal of Anatomy, 212(3), 211–228. https://doi.org/10.1111/j.1469-7580.2008.00864.x
  34. Connizzo, B. K., Yannascoli, S. M., & Soslowsky, L. J. (2013). Structure–function relationships of postnatal tendon development: A parallel to healing. Matrix Biology, 32(2), 106–116. https://doi.org/10.1016/j.matbio.2013.01.007
  35. Murchison, N. D., Price, B. A., Conner, D. A., Keene, D. R., Olson, E. N., Tabin, C. J., & Schweitzer, R. (2007). Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 134(14), 2697–2708. https://doi.org/10.1242/dev.001933 R
  36. Fallon, J., Blevins, F. T., Vogel, K., & Trotter, J. (2002). Functional morphology of the supraspinatus tendon. Journal of Orthopaedic Research, 20(5), 920–926. https://doi.org/10.1016/s0736-0266(02)00032-2
  37. Screen, H. R. C., Lee, D. A., Bader, D. L., & Shelton, J. C. (2004). An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218(2), 109–119. https://doi.org/10.1243/095441104322984004
  38. Tozer, S., & Duprez, D. (2005). Tendon and ligament: Development, repair and disease. Birth Defects Research Part C: Embryo Today: Reviews, 75(3), 226–236. https://doi.org/10.1002/bdrc.20049
  39. Couppé, C., Suetta, C., Kongsgaard, M., Justesen, L., Hvid, L. G., Aagaard, P., Kjær, M., & Magnusson, S. P. (2012). The effects of immobilization on the mechanical properties of the patellar tendon in younger and older men. Clinical Biomechanics, 27(9), 949–954. https://doi.org/10.1016/j.clinbiomech.2012.06.003
  40. Marusic, U., Narici, M., Simunic, B., Pisot, R., & Ritzmann, R. (2021). Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review. Journal of Applied Physiology, 131(1), 194–206. https://doi.org/10.1152/japplphysiol.00363.2020
  41. Jozsa, L., Thöring, J., Järvinen, M., Kannus, P., Lehto, M., & Kvist, M. (1988). Quantitative alterations in intramuscular connective tissue following immobilization: An experimental study in the rat calf muscles. Experimental and Molecular Pathology, 49(2), 267–278. https://doi.org/10.1016/0014-4800(88)90039-1
  42. Suetta, C. (2017). Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: Influence of ageing and surgery. Danish Medical Journal, 64 (8), B5377.
  43. Trudel, G., Zhou, J., Uhthoff, H. K., & Laneuville, O. (2008). Four Weeks of Mobility After 8 Weeks of Immobility Fails to Restore Normal Motion. Clinical Orthopaedics and Related Research, 466(5), 1239–1244. https://doi.org/10.1007/s11999-008-0181-z
  44. Trudel, G. (1997). Differentiating the myogenic and arthrogenic components of joint contractures. An experimental study on the rat knee joint. International Journal of Rehabilitation Research, 20(4), 397–404. https://doi.org/10.1097/00004356-199712000-00006
  45. Lindboe, C. F., & Platou, C. S. (1984). Effect of immobilization of short duration on the muscle fibre size. Clinical Physiology, 4(2), 183–188. https://doi.org/10.1111/j.1475-097x.1984.tb00234.x
  46. Okita, M., Yoshimura, T., Nakano, J., Motomura, M., & Eguchi, K. (2004). Effects of Reduced Joint Mobility on Sarcomere Length, Collagen Fibril Arrangement in the Endomysium, and Hyaluronan in Rat Soleus Muscle. Journal of Muscle Research and Cell Motility, 25(2), 159–166. https://doi.org/10.1023/b:jure.0000035851.12800.39
  47. Wang, F., Zhou, C. X., Zheng, Z., Li, D. J., Li, W., & Zhou, Y. (2022). Metformin reduces myogenic contracture and myofibrosis induced by rat knee joint immobilization via AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. Connective Tissue Research, 1–14. https://doi.org/10.1080/03008207.2022.2088365
  48. Mayer, W. P., Baptista, J. d. S., De Oliveira, F., Mori, M., & Liberti, E. A. (2021). Consequences of ankle joint immobilisation: insights from a morphometric analysis about fibre typification, intramuscular connective tissue, and muscle spindle in rats. Histochemistry and Cell Biology. https://doi.org/10.1007/s00418-021-02027-3
  49. Zhou, Y., Zhang, Q. B., Zhong, H. Z., Liu, Y., Li, J., Lv, H., & Jing, J. H. (2018). Rabbit Model of Extending Knee Joint Contracture: Progression of Joint Motion Restriction and Subsequent Joint Capsule Changes after Immobilization. The Journal of Knee Surgery, 33(01), 015–021. https://doi.org/10.1055/s-0038-1676502.
  50. Bey, M. J., Hunter, S. A., Kilambi, N., Butler, D. L., & Lindenfeld, T. N. (2005). Structural and mechanical properties of the glenohumeral joint posterior capsule. Journal of Shoulder and Elbow Surgery, 14(2), 201–206. https://doi.org/10.1016/j.jse.2004.06.016
  51. Stewart, K. J., Edmonds-Wilson, R. H., Brand, R. A., & Brown, T. D. (2002). Spatial distribution of hip capsule structural and material properties. Journal of Biomechanics, 35(11), 1491–1498. https://doi.org/10.1016/s0021-9290(02)00091-x
  52. Nagai, M., Ito, A., Tajino, J., Iijima, H., Yamaguchi, S., Zhang, X., Aoyama, T., & Kuroki, H. (2016). Remobilization causes site‐specific cyst formation in immobilization‐induced knee cartilage degeneration in an immobilized rat model. Journal of Anatomy, 228(6), 929–939. https://doi.org/10.1111/joa.12453
  53. Zhou, Q., Wei, B., Liu, S., Mao, F., Zhang, X., Hu, J., Zhou, J., Yao, Q., Xu, Y., & Wang, L. (2015). Cartilage matrix changes in contralateral mobile knees in a rabbit model of osteoarthritis induced by immobilization. BMC Musculoskeletal Disorders, 16(1). https://doi.org/10.1186/s12891-015-0679-y
  54. Campbell, T. M., Reilly, K., Laneuville, O., Uhthoff, H., & Trudel, G. (2018). Bone replaces articular cartilage in the rat knee joint after prolonged immobilization. Bone, 106, 42–51. https://doi.org/10.1016/j.bone.2017.09.018
  55. Watanabe, M., Campbell, T. M., Reilly, K., Uhthoff, H. K., Laneuville, O., & Trudel, G. (2021). Bone replaces unloaded articular cartilage during knee immobilization. A longitudinal study in the rat. Bone, 142, 115694. https://doi.org/10.1016/j.bone.2020.115694
  56. Hyldahl, R. D., Hafen, P. S., Nelson, W. B., Ahmadi, M., Pfeifer, B., Mehling, J., & Gifford, J. R. (2021). Passive muscle heating attenuates the decline in vascular function caused by limb disuse. The Journal of Physiology, 599 (20), 4581‒4596. https://doi.org/10.1113/jp281900

How to Cite

Tyazhelov, O., Khasawneh, A. A. M. ., Karpinska, O. ., Karpinsky, M. ., & Bitsadze, M. . (2023). Conceptual model of the process of formation of immobilization contractures. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (3-4), 52–61. https://doi.org/10.15674/0030-598720223-452-61

Issue

Section

ORIGINAL ARTICLES