MODERN TRENDS IN THE DEVELOPMENTS OF HIP AND KNEE ARTHROPLASTY

Authors

DOI:

https://doi.org/10.15674/0030-59872021470-78

Keywords:

Orthopaedics, hip arthroplasty, total knee arthroplasty, osteoarthritis, robot-assisted surgery

Abstract

Total hip (THA) and knee (TKA) arthroplasty is an effective surgical treatment for late-stage osteoarthritis. Objective. Highlight the most significant technological developments in the design of implants and assistive technologies for hip and knee arthroplasty. Results. The development of hip and knee arthroplasty is associated with the desire to improve treatment outcomes, reduce complications and increase the survival of implants. The emphasis is placed on some of the most interesting, in our opinion, trends in this area. It has been shown that metal-to-metal friction steam implants are used to replace the articular surface of the hip joint, but the method is the best option only for active men with a large hip joint. New approaches involve the use of friction pairs «ceramic – ceramic» or «metal – polyethylene». The creation of smaller femoral components of endoprostheses (mini-legs) for THA is aimed at preserving bone tissue and achieving physiological load. Dual mobility endoprostheses are increasingly preferred for primary THA. The creation of implants with a porous surface (in particular, with the use of additive technologies) is promising to increase their osteointegration and antibacterial properties. The latest direction is the creation of robotic support systems for joint replacement operations, which will improve the accuracy of implant positioning, reduce blood loss, improve functional results, as well as achieve after TKA balance of ligaments and joint space by accurately determining its size and accuracy resection of the femur. However, high-evidence clinical trials are needed to find convincing longterm results for this approach to become standard in hip and knee arthroplasty. Conclusions. Robotic surgery is one of the most interesting developments in hip and knee surgery. The growth in the use of this technology has shown convincing long-term results. 

Author Biographies

Igor Zazirnyi, Centre of orthopaedics, traumatology and sport medicine of «Feofaniya» Hospital by State administration, Kyiv. Ukraine

MD, DSci in Orthopaedics and Traumatology

Kateryna Barabash, Centre of orthopaedics, traumatology and sport medicine of «Feofaniya» Hospital by State administration, Kyiv. Ukraine

MD

References

  1. Amstutz, H. C., & Le Duff, M. J. (2015). Hip resurfacing: History, current status, and future. HIP International, 25(4), 330-338. https://doi.org/10.5301/hipint.5000268
  2. Su, E. P. (2016). Hip resurfacing: For the right patient and surgeon. Seminars in Arthroplasty, 27(4), 239-243. https://doi.org/10.1053/j.sart.2017.03.012
  3. Oxblom, A., Hedlund, H., Nemes, S., Brismar, H., Felländer-Tsai, L., & Rolfson, O. (2019). Patient-reported outcomes in hip resurfacing versus conventional total hip arthroplasty: A register-based matched cohort study of 726 patients. Acta Orthopaedica, 90(4), 318-323. https://doi.org/10.1080/17453674.2019.1604343
  4. Haddad, F. S., Konan, S., & Tahmassebi, J. (2015). A prospective comparative study of cementless total hip arthroplasty and hip resurfacing in patients under the age of 55 years. The Bone & Joint Journal, 97-B(5), 617-622. https://doi.org/10.1302/0301-620x.97b5.34537
  5. Farrier, A. J., Moore, L., Manning, W., Avila, C., Collins, S. N., & Holland, J. (2019). Comparing the cup deformation following implantation of a novel ceramic-on-ceramic hip resurfacing bearing to a metal standard in a cadaveric model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(6), 603-610. https://doi.org/10.1177/0954411919845721
  6. Su, E. P. (2012). Ceramic-ceramic bearing: Too unpredictable to use it regularly. HSS Journal, 8(3), 287-290. https://doi.org/10.1007/s11420-012-9289-5
  7. Treacy, R. B., Holland, J. P., Daniel, J., Ziaee, H., & McMinn, D. J. (2019). Preliminary report of clinical experience with metal-on-highly-crosslinked-polyethylene hip resurfacing. Bone & Joint Research, 8(10), 443-450. https://doi.org/10.1302/2046-3758.810.bjr-2019-0060.r1
  8. Jones, C. W., De Martino, I., D’Apolito, R., Nocon, A. A., Sculco, P. K., & Sculco, T. P. (2019). The use of dual-mobility bearings in patients at high risk of dislocation. The Bone & Joint Journal, 101-B(1_Supple_A), 41-45. https://doi.org/10.1302/0301-620x.101b1.bjj-2018-0506.r1
  9. Stulberg, S. D., & Patel, R. M. (2013). The short stem. The Bone & Joint Journal, 95-B(11 Supple A), 57-62. https://doi.org/10.1302/0301-620x.95b11.32936
  10. Feyen, H., & Shimmin, A. J. (2014). Is the length of the femoral component important in primary total hip replacement? The Bone & Joint Journal, 96-B(4), 442-448. https://doi.org/10.1302/0301-620x.96b4.33036
  11. Lidder, S., Epstein, D. J., & Scott, G. (2019). A systematic review of short metaphyseal loading cementless stems in hip arthroplasty. The Bone & Joint Journal, 101-B(5), 502-511. https://doi.org/10.1302/0301-620x.101b5.bjj-2018-1199.r1
  12. Pairon, P. (2018). Stem size in hip arthroplasty. The Bone & Joint Journal, 100-B(9), 1133-1135. https://doi.org/10.1302/0301-620x.100b9.bjj-2018-0750
  13. Ferguson, R. J., Broomfield, J. A., Malak, T. T., Palmer, A. J., Whitwell, D., Kendrick, B., Taylor, A., & Glyn-Jones, S. (2018). Primary stability of a short bone-conserving femoral stem. The Bone & Joint Journal, 100-B(9), 1148-1156. https://doi.org/10.1302/0301-620x.100b9.bjj-2017-1403.r1
  14. Fessy, M. H. (2018). La double mobilité en marche dans les prothèses totales de hanche: 1ere Intention&Reprise (Cahiers d'enseignement de la SOFCOT). Elsevier Masson
  15. Heckmann, N., Weitzman, D. S., Jaffri, H., Berry, D. J., Springer, B. D., & Lieberman, J. R. (2020). Trends in the use of dual mobility bearings in hip arthroplasty. The Bone & Joint Journal, 102-B(7 Supple B), 27-32. https://doi.org/10.1302/0301-620x.102b7.bjj-2019-1669.r1
  16. Blakeney, W. G., Epinette, J., & Vendittoli, P. (2019). Dual mobility total hip arthroplasty: Should everyone get one? EFORT Open Reviews, 4(9), 541-547. https://doi.org/10.1302/2058-5241.4.180045
  17. Rivière, C., Lazennec, J., Van Der Straeten, C., Auvinet, E., Cobb, J., & Muirhead-Allwood, S. (2017). The influence of spine-hip relations on total hip replacement: A systematic review. Orthopaedics & Traumatology: Surgery & Research, 103(4), 559-568. https://doi.org/10.1016/j.otsr.2017.02.014
  18. Plummer, D. R., Haughom, B. D., & Della Valle, C. J. (2014). Dual mobility in total hip arthroplasty. Orthopedic Clinics of North America, 45(1), 1-8. https://doi.org/10.1016/j.ocl.2013.08.004
  19. Boyer, B., Neri, T., Geringer, J., Di Iorio, A., Philippot, R., & Farizon, F. (2017). Long-term wear of dual mobility total hip replacement cups: Explant study. International Orthopaedics, 42(1), 41-47. https://doi.org/10.1007/s00264-017-3525-z
  20. Chan, M. K., Caudwell, M., Suchowersky, A., & Ashton, A. (2019). Femoral side only revision options for the Birmingham resurfacing arthroplasty. ANZ Journal of Surgery, 89(9), 1016-1021. https://doi.org/10.1111/ans.15036
  21. Harwin, S. F., Sultan, A. A., Khlopas, A., Chughtai, M., Sodhi, N., Piuzzi, N. S., & Mont, M. A. (2018). Mid-term outcomes of dual mobility acetabular cups for revision total hip arthroplasty. The Journal of Arthroplasty, 33(5), 1494-1500. https://doi.org/10.1016/j.arth.2017.12.008
  22. Berger, R. A., Lyon, J. H., Jacobs, J. J., Barden, R. M., Berkson, E. M., Sheinkop, M. B., Rosenberg, A. G., & Galante, J. O. (2001). Problems with Cementless total knee arthroplasty at 11 years Followup. Clinical Orthopaedics and Related Research, 392, 196-207. https://doi.org/10.1097/00003086-200111000-00024
  23. Nam, D., Lawrie, C. M., Salih, R., Nahhas, C. R., Barrack, R. L., & Nunley, R. M. (2019). Cemented versus Cementless total knee arthroplasty of the same modern design. Journal of Bone and Joint Surgery, 101(13), 1185-1192. https://doi.org/10.2106/jbjs.18.01162
  24. Newman, J. M., Sodhi, N., Dekis, J. C., Khlopas, A., Piuzzi, N. S., Sultan, A. A., Levin, J. M., & Mont, M. A. (2019). Survivorship and functional outcomes of Cementless versus cemented total knee arthroplasty: A meta-analysis. The Journal of Knee Surgery, 33(03), 270-278. https://doi.org/10.1055/s-0039-1678525
  25. Evans, J. T., Walker, R. W., Evans, J. P., Blom, A. W., Sayers, A., & Whitehouse, M. R. (2019). How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. The Lancet, 393(10172), 655-663. https://doi.org/10.1016/s0140-6736(18)32531-5
  26. Mohammad, H. R., Kennedy, J. A., Mellon, S. J., Judge, A., Dodd, C. A., & Murray, D. W. (2019). Ten-year clinical and radiographic results of 1000 cementless Oxford unicompartmental knee replacements. Knee Surgery, Sports Traumatology, Arthroscopy, 28(5), 1479-1487. https://doi.org/10.1007/s00167-019-05544-w
  27. https://www.multivu.com/players/English/8471351-depuy-synthes-attune-cementless-knee-platform/
  28. Guillemot, F. (2005). Recent advances in the design of titanium alloys for orthopedic applications. Expert Review of Medical Devices, 2(6), 741-748. https://doi.org/10.1586/17434440.2.6.741
  29. Ramaswamy, Y., Wu, C., & Zreiqat, H. (2009). Orthopedic coating materials: Considerations and applications. Expert Review of Medical Devices, 6(4), 423-430. https://doi.org/10.1586/erd.09.17
  30. Gbejuade, H. O., Lovering, A. M., & Webb, J. C. (2014). The role of microbial biofilms in prosthetic joint infections. Acta Orthopaedica, 86(2), 147-158. https://doi.org/10.3109/17453674.2014.966290
  31. Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37-54. https://doi.org/10.1016/j.actbio.2018.10.036
  32. Costerton, J. W. (2005). Biofilm theory can guide the treatment of device-related orthopaedic infections. Clinical Orthopaedics and Related Research, (437), 7-11. https://doi.org/10.1097/00003086-200508000-00003
  33. Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), 706-713. https://doi.org/10.1016/j.biomaterials.2009.09.081
  34. Bhadra, C. M., Khanh Truong, V., Pham, V. T., Al Kobaisi, M., Seniutinas, G., Wang, J. Y., ... & Ivanova, E. P. (2015). Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Scientific Reports, 5(1). https://doi.org/10.1038/srep16817
  35. Levack, A. E., Cyphert, E. L., Bostrom, M. P., Hernandez, C. J., Von Recum, H. A., & Carli, A. V. (2018). Current options and emerging biomaterials for Periprosthetic joint infection. Current Rheumatology Reports, 20(6). https://doi.org/10.1007/s11926-018-0742-4
  36. Pishbin, F., Mouriño, V., Gilchrist, J., McComb, D., Kreppel, S., Salih, V., Ryan, M., & Boccaccini, A. (2013). Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomaterialia, 9(7), 7469-7479. https://doi.org/10.1016/j.actbio.2013.03.006
  37. Sullivan, M. P., McHale, K. J., Parvizi, J., & Mehta, S. (2014). Nanotechnology. The Bone & Joint Journal, 96-B(5), 569-573. https://doi.org/10.1302/0301-620x.96b5.33606
  38. Trauner, K. B. (2018). The emerging role of 3D printing in arthroplasty and orthopedics. The Journal of Arthroplasty, 33(8), 2352-2354. https://doi.org/10.1016/j.arth.2018.02.033
  39. Muirhead-Allwood, S., Sandiford, N., Skinner, J. A., Hua, J., Kabir, C., & Walker, P. S. (2010). Uncemented custom computer-assisted design and manufacture of hydroxyapatite-coated femoral components. The Journal of Bone and Joint Surgery. British volume, 92-B(8), 1079-1084. https://doi.org/10.1302/0301-620x.92b8.23123
  40. Dessyn, E., Flecher, X., Parratte, S., Ollivier, M., & Argenson, J. (2018). A 20-year follow-up evaluation of total hip arthroplasty in patients younger than 50 using a custom cementless stem. HIP International, 29(5), 481-488. https://doi.org/10.1177/1120700018803290
  41. Arabnejad, S., Johnston, B., Tanzer, M., & Pasini, D. (2016). Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783. https://doi.org/10.1002/jor.23445
  42. De Martino, I., Strigelli, V., Cacciola, G., Gu, A., Bostrom, M. P., & Sculco, P. K. (2019). Survivorship and clinical outcomes of custom Triflange acetabular components in revision total hip arthroplasty: A systematic review. The Journal of Arthroplasty, 34(10), 2511-2518. https://doi.org/10.1016/j.arth.2019.05.032
  43. Clement, N. D., Deehan, D. J., & Patton, J. T. (2019). Robot-assisted unicompartmental knee arthroplasty for patients with isolated medial compartment osteoarthritis is cost-effective. The Bone & Joint Journal, 101-B(9), 1063-1070. https://doi.org/10.1302/0301-620x.101b9.bjj-2018-1658.r1
  44. Chai, W., Guo, R., Puah, K. L., Jerabek, S., Chen, J., & Tang, P. (2020). Use of robotic arm assisted technique in complex primary total hip arthroplasty. Orthopaedic Surgery, 12(2), 686-691. https://doi.org/10.1111/os.12659
  45. Lawson, J. A., Garber, A. T., Stimac, J. D., Ramakrishnan, R., Smith, L. S., & Malkani, A. L. (2019). Does robotic-assisted total hip arthroplasty improve accuracy of cup positioning? The Journal of Hip Surgery, 03(04), 176-180. https://doi.org/10.1055/s-0039-1693480
  46. Illgen, R. L., Bukowski, B. R., & Abiola, R. (2017). RoboticAssisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surgical Technology International, 30, 365–372
  47. Bell, S. W., Anthony, I., Jones, B., MacLean, A., Rowe, P., & Blyth, M. (2016). Improved accuracy of component positioning with robotic-assisted Unicompartmental knee arthroplasty. Journal of Bone and Joint Surgery, 98(8), 627-635. https://doi.org/10.2106/jbjs.15.00664
  48. Lonner, J. H., & Fillingham, Y. A. (2018). Pros and cons: A balanced view of robotics in knee arthroplasty. The Journal of Arthroplasty, 33(7), 2007-2013. https://doi.org/10.1016/j.arth.2018.03.056
  49. Volpin, A., Maden, C., & Konan, S. (2020). New advances in robotic surgery in hip and knee replacement. Handbook of Robotic and Image-Guided Surgery, 397-410. https://doi.org/10.1016/b978-0-12-814245-5.00023-2
  50. Hampp, E., Chughtai, M., Scholl, L., Sodhi, N., Bhowmik-Stoker, M., Jacofsky, D., & Mont, M. (2018). Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. The Journal of Knee Surgery, 32(03), 239-250. https://doi.org/10.1055/s-0038-1641729
  51. Shalhoub, S., Lawrence, J. M., Keggi, J. M., Randall, A. L., DeClaire, J. H., & Plaskos, C. (2019). Imageless, robotic-assisted total knee arthroplasty combined with a robotic tensioning system can help predict and achieve accurate postoperative ligament balance. Arthroplasty Today, 5(3), 334-340. https://doi.org/10.1016/j.artd.2019.07.003
  52. Bukowski, B. R., Anderson, P., & Khlopas, A. (2016). Improved functional outcomes with robotic compared with manual total hip arthroplasty. Surgical Technology International, 29, 303–308
  53. Sultan, A. A., Piuzzi, N., Khlopas, A., Chughtai, M., Sodhi, N., & Mont, M. A. (2017). Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection. Expert Review of Medical Devices, 14(12), 925-927. https://doi.org/10.1080/17434440.2017.1392237
  54. Karunaratne, S., Duan, M., Pappas, E., Fritsch, B., Boyle, R., Gupta, S., ... & Steffens, D. (2018). The effectiveness of robotic hip and knee arthroplasty on patient-reported outcomes: A systematic review and meta-analysis. International Orthopaedics, 43(6), 1283-1295. https://doi.org/10.1007/s00264-018-4140-3
  55. Zhang, F., Li, H., Ba, Z., Bo, C., & Li, K. (2019). Robotic arm-assisted vs conventional unicompartmental knee arthroplasty. Medicine, 98(35), e16968. https://doi.org/10.1097/md.0000000000016968
  56. Moschetti, W. E., Konopka, J. F., Rubash, H. E., & Genuario, J. W. (2016). Can robot-assisted Unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis. The Journal of Arthroplasty, 31(4), 759-765. https://doi.org/10.1016/j.arth.2015.10.018

How to Cite

Zazirnyi, I. ., & Barabash, K. (2023). MODERN TRENDS IN THE DEVELOPMENTS OF HIP AND KNEE ARTHROPLASTY. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (4), 70–78. https://doi.org/10.15674/0030-59872021470-78

Issue

Section

IN AID OF PRACTING DOCTOR. LECTURES