MODERN TRENDS IN THE DEVELOPMENTS OF HIP AND KNEE ARTHROPLASTY
DOI:
https://doi.org/10.15674/0030-59872021470-78Keywords:
Orthopaedics, hip arthroplasty, total knee arthroplasty, osteoarthritis, robot-assisted surgeryAbstract
Total hip (THA) and knee (TKA) arthroplasty is an effective surgical treatment for late-stage osteoarthritis. Objective. Highlight the most significant technological developments in the design of implants and assistive technologies for hip and knee arthroplasty. Results. The development of hip and knee arthroplasty is associated with the desire to improve treatment outcomes, reduce complications and increase the survival of implants. The emphasis is placed on some of the most interesting, in our opinion, trends in this area. It has been shown that metal-to-metal friction steam implants are used to replace the articular surface of the hip joint, but the method is the best option only for active men with a large hip joint. New approaches involve the use of friction pairs «ceramic – ceramic» or «metal – polyethylene». The creation of smaller femoral components of endoprostheses (mini-legs) for THA is aimed at preserving bone tissue and achieving physiological load. Dual mobility endoprostheses are increasingly preferred for primary THA. The creation of implants with a porous surface (in particular, with the use of additive technologies) is promising to increase their osteointegration and antibacterial properties. The latest direction is the creation of robotic support systems for joint replacement operations, which will improve the accuracy of implant positioning, reduce blood loss, improve functional results, as well as achieve after TKA balance of ligaments and joint space by accurately determining its size and accuracy resection of the femur. However, high-evidence clinical trials are needed to find convincing longterm results for this approach to become standard in hip and knee arthroplasty. Conclusions. Robotic surgery is one of the most interesting developments in hip and knee surgery. The growth in the use of this technology has shown convincing long-term results.
References
- Amstutz, H. C., & Le Duff, M. J. (2015). Hip resurfacing: History, current status, and future. HIP International, 25(4), 330-338. https://doi.org/10.5301/hipint.5000268
- Su, E. P. (2016). Hip resurfacing: For the right patient and surgeon. Seminars in Arthroplasty, 27(4), 239-243. https://doi.org/10.1053/j.sart.2017.03.012
- Oxblom, A., Hedlund, H., Nemes, S., Brismar, H., Felländer-Tsai, L., & Rolfson, O. (2019). Patient-reported outcomes in hip resurfacing versus conventional total hip arthroplasty: A register-based matched cohort study of 726 patients. Acta Orthopaedica, 90(4), 318-323. https://doi.org/10.1080/17453674.2019.1604343
- Haddad, F. S., Konan, S., & Tahmassebi, J. (2015). A prospective comparative study of cementless total hip arthroplasty and hip resurfacing in patients under the age of 55 years. The Bone & Joint Journal, 97-B(5), 617-622. https://doi.org/10.1302/0301-620x.97b5.34537
- Farrier, A. J., Moore, L., Manning, W., Avila, C., Collins, S. N., & Holland, J. (2019). Comparing the cup deformation following implantation of a novel ceramic-on-ceramic hip resurfacing bearing to a metal standard in a cadaveric model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(6), 603-610. https://doi.org/10.1177/0954411919845721
- Su, E. P. (2012). Ceramic-ceramic bearing: Too unpredictable to use it regularly. HSS Journal, 8(3), 287-290. https://doi.org/10.1007/s11420-012-9289-5
- Treacy, R. B., Holland, J. P., Daniel, J., Ziaee, H., & McMinn, D. J. (2019). Preliminary report of clinical experience with metal-on-highly-crosslinked-polyethylene hip resurfacing. Bone & Joint Research, 8(10), 443-450. https://doi.org/10.1302/2046-3758.810.bjr-2019-0060.r1
- Jones, C. W., De Martino, I., D’Apolito, R., Nocon, A. A., Sculco, P. K., & Sculco, T. P. (2019). The use of dual-mobility bearings in patients at high risk of dislocation. The Bone & Joint Journal, 101-B(1_Supple_A), 41-45. https://doi.org/10.1302/0301-620x.101b1.bjj-2018-0506.r1
- Stulberg, S. D., & Patel, R. M. (2013). The short stem. The Bone & Joint Journal, 95-B(11 Supple A), 57-62. https://doi.org/10.1302/0301-620x.95b11.32936
- Feyen, H., & Shimmin, A. J. (2014). Is the length of the femoral component important in primary total hip replacement? The Bone & Joint Journal, 96-B(4), 442-448. https://doi.org/10.1302/0301-620x.96b4.33036
- Lidder, S., Epstein, D. J., & Scott, G. (2019). A systematic review of short metaphyseal loading cementless stems in hip arthroplasty. The Bone & Joint Journal, 101-B(5), 502-511. https://doi.org/10.1302/0301-620x.101b5.bjj-2018-1199.r1
- Pairon, P. (2018). Stem size in hip arthroplasty. The Bone & Joint Journal, 100-B(9), 1133-1135. https://doi.org/10.1302/0301-620x.100b9.bjj-2018-0750
- Ferguson, R. J., Broomfield, J. A., Malak, T. T., Palmer, A. J., Whitwell, D., Kendrick, B., Taylor, A., & Glyn-Jones, S. (2018). Primary stability of a short bone-conserving femoral stem. The Bone & Joint Journal, 100-B(9), 1148-1156. https://doi.org/10.1302/0301-620x.100b9.bjj-2017-1403.r1
- Fessy, M. H. (2018). La double mobilité en marche dans les prothèses totales de hanche: 1ere Intention&Reprise (Cahiers d'enseignement de la SOFCOT). Elsevier Masson
- Heckmann, N., Weitzman, D. S., Jaffri, H., Berry, D. J., Springer, B. D., & Lieberman, J. R. (2020). Trends in the use of dual mobility bearings in hip arthroplasty. The Bone & Joint Journal, 102-B(7 Supple B), 27-32. https://doi.org/10.1302/0301-620x.102b7.bjj-2019-1669.r1
- Blakeney, W. G., Epinette, J., & Vendittoli, P. (2019). Dual mobility total hip arthroplasty: Should everyone get one? EFORT Open Reviews, 4(9), 541-547. https://doi.org/10.1302/2058-5241.4.180045
- Rivière, C., Lazennec, J., Van Der Straeten, C., Auvinet, E., Cobb, J., & Muirhead-Allwood, S. (2017). The influence of spine-hip relations on total hip replacement: A systematic review. Orthopaedics & Traumatology: Surgery & Research, 103(4), 559-568. https://doi.org/10.1016/j.otsr.2017.02.014
- Plummer, D. R., Haughom, B. D., & Della Valle, C. J. (2014). Dual mobility in total hip arthroplasty. Orthopedic Clinics of North America, 45(1), 1-8. https://doi.org/10.1016/j.ocl.2013.08.004
- Boyer, B., Neri, T., Geringer, J., Di Iorio, A., Philippot, R., & Farizon, F. (2017). Long-term wear of dual mobility total hip replacement cups: Explant study. International Orthopaedics, 42(1), 41-47. https://doi.org/10.1007/s00264-017-3525-z
- Chan, M. K., Caudwell, M., Suchowersky, A., & Ashton, A. (2019). Femoral side only revision options for the Birmingham resurfacing arthroplasty. ANZ Journal of Surgery, 89(9), 1016-1021. https://doi.org/10.1111/ans.15036
- Harwin, S. F., Sultan, A. A., Khlopas, A., Chughtai, M., Sodhi, N., Piuzzi, N. S., & Mont, M. A. (2018). Mid-term outcomes of dual mobility acetabular cups for revision total hip arthroplasty. The Journal of Arthroplasty, 33(5), 1494-1500. https://doi.org/10.1016/j.arth.2017.12.008
- Berger, R. A., Lyon, J. H., Jacobs, J. J., Barden, R. M., Berkson, E. M., Sheinkop, M. B., Rosenberg, A. G., & Galante, J. O. (2001). Problems with Cementless total knee arthroplasty at 11 years Followup. Clinical Orthopaedics and Related Research, 392, 196-207. https://doi.org/10.1097/00003086-200111000-00024
- Nam, D., Lawrie, C. M., Salih, R., Nahhas, C. R., Barrack, R. L., & Nunley, R. M. (2019). Cemented versus Cementless total knee arthroplasty of the same modern design. Journal of Bone and Joint Surgery, 101(13), 1185-1192. https://doi.org/10.2106/jbjs.18.01162
- Newman, J. M., Sodhi, N., Dekis, J. C., Khlopas, A., Piuzzi, N. S., Sultan, A. A., Levin, J. M., & Mont, M. A. (2019). Survivorship and functional outcomes of Cementless versus cemented total knee arthroplasty: A meta-analysis. The Journal of Knee Surgery, 33(03), 270-278. https://doi.org/10.1055/s-0039-1678525
- Evans, J. T., Walker, R. W., Evans, J. P., Blom, A. W., Sayers, A., & Whitehouse, M. R. (2019). How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. The Lancet, 393(10172), 655-663. https://doi.org/10.1016/s0140-6736(18)32531-5
- Mohammad, H. R., Kennedy, J. A., Mellon, S. J., Judge, A., Dodd, C. A., & Murray, D. W. (2019). Ten-year clinical and radiographic results of 1000 cementless Oxford unicompartmental knee replacements. Knee Surgery, Sports Traumatology, Arthroscopy, 28(5), 1479-1487. https://doi.org/10.1007/s00167-019-05544-w
- https://www.multivu.com/players/English/8471351-depuy-synthes-attune-cementless-knee-platform/
- Guillemot, F. (2005). Recent advances in the design of titanium alloys for orthopedic applications. Expert Review of Medical Devices, 2(6), 741-748. https://doi.org/10.1586/17434440.2.6.741
- Ramaswamy, Y., Wu, C., & Zreiqat, H. (2009). Orthopedic coating materials: Considerations and applications. Expert Review of Medical Devices, 6(4), 423-430. https://doi.org/10.1586/erd.09.17
- Gbejuade, H. O., Lovering, A. M., & Webb, J. C. (2014). The role of microbial biofilms in prosthetic joint infections. Acta Orthopaedica, 86(2), 147-158. https://doi.org/10.3109/17453674.2014.966290
- Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37-54. https://doi.org/10.1016/j.actbio.2018.10.036
- Costerton, J. W. (2005). Biofilm theory can guide the treatment of device-related orthopaedic infections. Clinical Orthopaedics and Related Research, (437), 7-11. https://doi.org/10.1097/00003086-200508000-00003
- Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), 706-713. https://doi.org/10.1016/j.biomaterials.2009.09.081
- Bhadra, C. M., Khanh Truong, V., Pham, V. T., Al Kobaisi, M., Seniutinas, G., Wang, J. Y., ... & Ivanova, E. P. (2015). Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Scientific Reports, 5(1). https://doi.org/10.1038/srep16817
- Levack, A. E., Cyphert, E. L., Bostrom, M. P., Hernandez, C. J., Von Recum, H. A., & Carli, A. V. (2018). Current options and emerging biomaterials for Periprosthetic joint infection. Current Rheumatology Reports, 20(6). https://doi.org/10.1007/s11926-018-0742-4
- Pishbin, F., Mouriño, V., Gilchrist, J., McComb, D., Kreppel, S., Salih, V., Ryan, M., & Boccaccini, A. (2013). Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomaterialia, 9(7), 7469-7479. https://doi.org/10.1016/j.actbio.2013.03.006
- Sullivan, M. P., McHale, K. J., Parvizi, J., & Mehta, S. (2014). Nanotechnology. The Bone & Joint Journal, 96-B(5), 569-573. https://doi.org/10.1302/0301-620x.96b5.33606
- Trauner, K. B. (2018). The emerging role of 3D printing in arthroplasty and orthopedics. The Journal of Arthroplasty, 33(8), 2352-2354. https://doi.org/10.1016/j.arth.2018.02.033
- Muirhead-Allwood, S., Sandiford, N., Skinner, J. A., Hua, J., Kabir, C., & Walker, P. S. (2010). Uncemented custom computer-assisted design and manufacture of hydroxyapatite-coated femoral components. The Journal of Bone and Joint Surgery. British volume, 92-B(8), 1079-1084. https://doi.org/10.1302/0301-620x.92b8.23123
- Dessyn, E., Flecher, X., Parratte, S., Ollivier, M., & Argenson, J. (2018). A 20-year follow-up evaluation of total hip arthroplasty in patients younger than 50 using a custom cementless stem. HIP International, 29(5), 481-488. https://doi.org/10.1177/1120700018803290
- Arabnejad, S., Johnston, B., Tanzer, M., & Pasini, D. (2016). Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783. https://doi.org/10.1002/jor.23445
- De Martino, I., Strigelli, V., Cacciola, G., Gu, A., Bostrom, M. P., & Sculco, P. K. (2019). Survivorship and clinical outcomes of custom Triflange acetabular components in revision total hip arthroplasty: A systematic review. The Journal of Arthroplasty, 34(10), 2511-2518. https://doi.org/10.1016/j.arth.2019.05.032
- Clement, N. D., Deehan, D. J., & Patton, J. T. (2019). Robot-assisted unicompartmental knee arthroplasty for patients with isolated medial compartment osteoarthritis is cost-effective. The Bone & Joint Journal, 101-B(9), 1063-1070. https://doi.org/10.1302/0301-620x.101b9.bjj-2018-1658.r1
- Chai, W., Guo, R., Puah, K. L., Jerabek, S., Chen, J., & Tang, P. (2020). Use of robotic arm assisted technique in complex primary total hip arthroplasty. Orthopaedic Surgery, 12(2), 686-691. https://doi.org/10.1111/os.12659
- Lawson, J. A., Garber, A. T., Stimac, J. D., Ramakrishnan, R., Smith, L. S., & Malkani, A. L. (2019). Does robotic-assisted total hip arthroplasty improve accuracy of cup positioning? The Journal of Hip Surgery, 03(04), 176-180. https://doi.org/10.1055/s-0039-1693480
- Illgen, R. L., Bukowski, B. R., & Abiola, R. (2017). RoboticAssisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surgical Technology International, 30, 365–372
- Bell, S. W., Anthony, I., Jones, B., MacLean, A., Rowe, P., & Blyth, M. (2016). Improved accuracy of component positioning with robotic-assisted Unicompartmental knee arthroplasty. Journal of Bone and Joint Surgery, 98(8), 627-635. https://doi.org/10.2106/jbjs.15.00664
- Lonner, J. H., & Fillingham, Y. A. (2018). Pros and cons: A balanced view of robotics in knee arthroplasty. The Journal of Arthroplasty, 33(7), 2007-2013. https://doi.org/10.1016/j.arth.2018.03.056
- Volpin, A., Maden, C., & Konan, S. (2020). New advances in robotic surgery in hip and knee replacement. Handbook of Robotic and Image-Guided Surgery, 397-410. https://doi.org/10.1016/b978-0-12-814245-5.00023-2
- Hampp, E., Chughtai, M., Scholl, L., Sodhi, N., Bhowmik-Stoker, M., Jacofsky, D., & Mont, M. (2018). Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. The Journal of Knee Surgery, 32(03), 239-250. https://doi.org/10.1055/s-0038-1641729
- Shalhoub, S., Lawrence, J. M., Keggi, J. M., Randall, A. L., DeClaire, J. H., & Plaskos, C. (2019). Imageless, robotic-assisted total knee arthroplasty combined with a robotic tensioning system can help predict and achieve accurate postoperative ligament balance. Arthroplasty Today, 5(3), 334-340. https://doi.org/10.1016/j.artd.2019.07.003
- Bukowski, B. R., Anderson, P., & Khlopas, A. (2016). Improved functional outcomes with robotic compared with manual total hip arthroplasty. Surgical Technology International, 29, 303–308
- Sultan, A. A., Piuzzi, N., Khlopas, A., Chughtai, M., Sodhi, N., & Mont, M. A. (2017). Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection. Expert Review of Medical Devices, 14(12), 925-927. https://doi.org/10.1080/17434440.2017.1392237
- Karunaratne, S., Duan, M., Pappas, E., Fritsch, B., Boyle, R., Gupta, S., ... & Steffens, D. (2018). The effectiveness of robotic hip and knee arthroplasty on patient-reported outcomes: A systematic review and meta-analysis. International Orthopaedics, 43(6), 1283-1295. https://doi.org/10.1007/s00264-018-4140-3
- Zhang, F., Li, H., Ba, Z., Bo, C., & Li, K. (2019). Robotic arm-assisted vs conventional unicompartmental knee arthroplasty. Medicine, 98(35), e16968. https://doi.org/10.1097/md.0000000000016968
- Moschetti, W. E., Konopka, J. F., Rubash, H. E., & Genuario, J. W. (2016). Can robot-assisted Unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis. The Journal of Arthroplasty, 31(4), 759-765. https://doi.org/10.1016/j.arth.2015.10.018
Downloads
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).