THE INFLUENCE OF REGENERATIVE TECHNOLOGIES ON RECOVERY PROCESSES IN LEG AFTER TRAUMATIC ISCHEMIA (EXPERIMENTAL STUDY)

Authors

  • Andriy Pidlisetsky SI «Institute of Traumatology and Orthopedics NAMS of Ukraine», Kyiv, Ukraine
  • Oleksii Dolhopolov SI «Institute of Traumatology and Orthopedics NAMS of Ukraine», Kyiv, Ukraine
  • Serhii Savosko Bohomolets National Medical University, Department of Histology and Embryology, Kyiv. Ukraine, Ukraine
  • Olexandr Makarenko Interregional Academy of personnel Management, Kyiv. Ukraine, Ukraine

DOI:

https://doi.org/10.15674/0030-59872021463-69

Keywords:

Traumatic ischemia, necrosis, histological changes in muscles

Abstract

Post-traumatic muscle ischemia results from severe injury and can lead to muscle dysfunction. Therefore, patient management and treatment are very significant in all periods of injury. New methods are performed, especially using regenerative technologies to avoid complications and improve long-term outcomes. Objective. To determine histological changes in the muscles of the injured limb after traumatic ischemia after injection of platelet-rich plasma,
Bone marrow stem cell concentrate (BMAC), and Stromal vascular fraction (SVF) prepared from adipose tissue on the 5, 15, and 30 days. Material and methods. Experiments were conducted on rabbits (Chinchilla breed). A tourniquet imposed on a lower limb, from the middle third of the thigh to the ankle joint. After 6 hours, the tourniquet was removed. The animals were divided into four groups: control, platelet-rich plasma, bone marrow stem cell concentrate, and stromal vascular fraction prepared from adipose tissue — histological muscle changes provided by Tescan Mira 3 LMU (Czech Republic) in scanning transmission electron microscopy. Results. On the 5th day after the experiment were no significant histological changes in muscles but in the contrary on the 15 days after experiment in BMAC and SVF groups detected new muscle fibers formation in necrotic areas and myonucleus organization. On the 30th day new angiogenesis was detected around muscle fibers. Platelet-rich plasma group characterized by massive connective tissue formation in necrotic areas. Conclusions. Necrosis and progressive muscle hypotrophy are unavoidably for this type of injury. It was shown that BMAC and SVF could stimulate regeneration and angiogenesis. 

Author Biographies

Oleksii Dolhopolov, SI «Institute of Traumatology and Orthopedics NAMS of Ukraine», Kyiv

MD, DSci in Orthopaedics and Traumatology

Serhii Savosko, Bohomolets National Medical University, Department of Histology and Embryology, Kyiv. Ukraine

MD, PhD

Olexandr Makarenko, Interregional Academy of personnel Management, Kyiv. Ukraine

MD, DSci in Orthopaedics and Traumatology

References

  1. Savel’ev, V. A. (2009). Long-term results of restoration of the peripheral nerve trunks of the upper extremities: a clinical and experimental study. Autoref. of dissertation of PhD in Medical Sciences. (in Russian)
  2. Scimeca, M., Bonanno, E., Piccirilli, E., Baldi, J., Mauriello, A., Orlandi, A., ... & Tarantino, U. (2015). Satellite cells CD44 positive drive muscle regeneration in osteoarthritis patients. Stem Cells International, 2015, 1-11. https://doi.org/10.1155/2015/469459
  3. Ceafalan, L. C., Fertig, T. E., Popescu, A. C., Popescu, B. O., Hinescu, M. E., & Gherghiceanu, M. (2017). Skeletal muscle regeneration involves macrophage-myoblast bonding. Cell Adhesion & Migration, 12(3), 228-235. https://doi.org/10.1080/19336918.2017.1346774
  4. Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., & Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell, 102(6), 777-786. https://doi.org/10.1016/s0092-8674(00)00066-0
  5. Harris, J. (2003). Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon, 42(8), 933-945. https://doi.org/10.1016/j.toxicon.2003.11.011
  6. Ismail, A. M., Abdou, S. M., Aty, H. A., Kamhawy, A. H., Elhinedy, M., Elwageh, M., ... & Salem, M. L. (2014). Autologous transplantation of CD34+ bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia. Cytotechnology, 68(4), 771-781. https://doi.org/10.1007/s10616-014-9828-7
  7. Leroux, L., Descamps, B., Tojais, N. F., Séguy, B., Oses, P., Moreau, C., ... & Duplàa, C. (2010). Hypoxia preconditioned Mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a wnt4-dependent pathway. Molecular Therapy, 18(8), 1545-1552. https://doi.org/10.1038/mt.2010.108
  8. Liew, A., & O'Brien, T. (2012). Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Research & Therapy, 3(4). https://doi.org/10.1186/scrt119
  9. Remessy, A. E. (2016). Cell therapy and critical limb ischemia: Evidence and window of opportunity in obesity. Obesity & Control Therapies: Open Access, 3(1), 1-5. https://doi.org/10.15226/2374-8354/3/1/00121
  10. Setayesh, K., Villarreal, A., Gottschalk, A., Tokish, J. M., & Choate, W. S. (2018). Treatment of muscle injuries with platelet-rich plasma: A review of the literature. Current Reviews in Musculoskeletal Medicine, 11(4), 635-642. https://doi.org/10.1007/s12178-018-9526-8
  11. Pidlisetskyy, А., Savosko, S., & Dolhopolov, О. (2021). Peripheral nerve lesions after a mechanically induced limb ischemia. Georgian Medical News, 310, 165–169.
  12. Pidlisetsky, А. Т., Kosiakova, G. V., Goridko, T. M., Berdyschev, A. G., Meged, O. F., Savosko, S. I., & Dolgopolov, О. V. (2021). Administration of platelet-rich plasma or concentrated bone marrow aspirate after mechanically induced ischemia improves biochemical parameters in skeletal muscle. The Ukrainian Biochemical Journal, 93(3), 30-38. https://doi.org/10.15407/ubj93.03.030
  13. Turner, N. J., & Badylak, S. F. (2011). Regeneration of skeletal muscle. Cell and Tissue Research, 347(3), 759-774. https://doi.org/10.1007/s00441-011-1185-7
  14. Langridge, B., Griffin, M., & Butler, P. E. (2021). Regenerative medicine for skeletal muscle loss: A review of current tissue engineering approaches. Journal of Materials Science: Materials in Medicine, 32(1). https://doi.org/10.1007/s10856-020-06476-5
  15. Chellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019). Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 20(3), 683. https://doi.org/10.3390/ijms20030683
  16. Punduk, Z., Oral, O., Ozkayin, N., Rahman, K., & Varol, R. (2016). Single dose of intra-muscular platelet rich plasma reverses the increase in plasma iron levels in exercise-induced muscle damage: A pilot study. Journal of Sport and Health Science, 5(1), 109-114. https://doi.org/10.1016/j.jshs.2014.11.005

How to Cite

Pidlisetsky, A. ., Dolhopolov, O. ., Savosko, S. ., & Makarenko, O. . (2023). THE INFLUENCE OF REGENERATIVE TECHNOLOGIES ON RECOVERY PROCESSES IN LEG AFTER TRAUMATIC ISCHEMIA (EXPERIMENTAL STUDY). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (4), 63–69. https://doi.org/10.15674/0030-59872021463-69

Issue

Section

ORIGINAL ARTICLES