Relationship between structural changes in paravertebral muscles and the development of spine degenerative diseases

Authors

  • Volodymyr Radchenko Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-8679-1362
  • Nataliya Ashukina Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0003-0597-4472
  • Valentyna Maltseva Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-8552-7287
  • Mykyta Skidanov Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
  • Artem Skidanov Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-6954-9080

DOI:

https://doi.org/10.15674/0030-59872021292-99

Keywords:

Low back pain, paravertebral muscle atrophy, intervertebral disc, obesity, physical activity, vitamin D

Abstract

Based on the systematic approach to the diagnosis of spinal patho­logy, there are no fundamental differences in the etiology of spine degenerative disease, facet joints arthritis, and other diseases. These diseases are considered multifactorial: age (aging), systemic regulatory factors (hormones, peptides, cytokines), genetic predisposition, inadequate physical activity, unfavorable environmental factors, and others lead to pathological changes in the structure of the spinal motor segment components. Recently, much attention has been paid to the paravertebral muscles changes, in which over time, as a result of injuries or degenerative processes, inevitably lead to dysfunction, which can lead to the occurrence of chronic lumbar pain. Objective. To assess the relationship between structural changes in paravertebral muscles and the development of degenerative diseases of the spine on the basis of scientific literature review. It was found that degenerative changes in paravertebral muscles, as components of spinal motor segments, develop with aging. In particular, muscle fibers are replaced by fat tissue, which is more pronounced in women compared to men. A direct correlation between chronic lumbar pain and paravertebral muscle atrophy has been reported. Systemic factors, in particular low levels of vitamin D, also can cause the development of degenerative changes in paravertebral muscles, especially in women. Obesity provokes systemic inflammation, increases fatty infiltration of skeletal muscles and increases sensitivity to pain. Reduced levels of physical activity lead to weakness and atrophy of the paravertebral muscles, which can cause degeneration of the intervertebral disc. At the same time, exercise prior to spinal surgery for degenerative disea­ses improves functional outcomes and reduces pain. Conversely, damage to the paravertebral muscles increase the load on the adjacent to spinal fusion segments. In general, the role of paravertebral muscles in the development of degenerative spinal diseases has not been definitively studied.

Author Biographies

Volodymyr Radchenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Traumatology and Orthopаedics

Nataliya Ashukina, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Biol. Sci.

Mykyta Skidanov, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD

Artem Skidanov, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

DMSci in Traumatology and Orthopаedics

References

  1. Kondrov, D. (2012). Low back pain. Interní medicína pro praxi, 14(2), 69–72
  2. Korzh, N. A., Prodan, A. I., & Barysh A. E. (2004). Pathogenetic classification of degenerative diseases of the spine. Orthopedics, Traumatology and Prosthetics, 3, 5–13. [in Russian]
  3. Khan, A. N., Jacobsen, H. E., Khan, J., Filippi, C. G., Levine, M., Lehman, R. A., ... & Chahine, N. O. (2017). Inflammatory biomarkers of low back pain and disc degeneration: A review. Annals of the New York Academy of Sciences, 1410(1), 68-84. https://doi.org/10.1111/nyas.13551
  4. Rea, W., Kapur, S., & Mutagi, H. (2012). Intervertebral disc as a source of pain. Continuing Education in Anaesthesia Critical Care & Pain, 12(6), 279-282. https://doi.org/10.1093/bjaceaccp/mks028
  5. Cooper, R. G., Forbes, W. S., & Jayson, M. I. (1992). Radiographic demonstration of paraspinal muscle wasting in patients with chronic low back pain. Rheumatology, 31(6), 389-394. https://doi.org/10.1093/rheumatology/31.6.389
  6. Hides, J. A., Stokes, M. J., Saide, M., Jull, G. A., & Cooper, D. H. (1994). Evidence of lumbar Multifidus muscle wasting ipsilateral to symptoms in patients with acute/Subacute low back pain. Spine, 19(Supplement), 165-172. https://doi.org/10.1097/00007632-199401001-00009
  7. He, K., Head, J., Mouchtouris, N., Hines, K., Shea, P., Schmidt, R., ... & Sharan, A. (2019). The implications of Paraspinal muscle atrophy in low back pain, thoracolumbar pathology, and clinical outcomes after spine surgery: A review of the literature. Global Spine Journal, 10(5), 657-666. https://doi.org/10.1177/2192568219879087
  8. Radchenko, V. A., Dedukh, N. V., Ashukina, N. A., & Skidanov, A. G. (2014). Structural features of paravertebral muscles in health and in degenerative diseases of the lumbar spine (literature review). Orthopedics, traumatology and prosthetics, 4, 122–127. https://doi.org/10.15674/0030-598720144122-127. [in Russian]
  9. Crossman, K., Mahon, M., Watson, P. J., Oldham, J. A., & Cooper, R. G. (2004). Chronic low back pain-associated Paraspinal muscle dysfunction is not the result of a constitutionally determined “Adverse” fiber-type composition. Spine, 29(6), 628-634. https://doi.org/10.1097/01.brs.0000115133.97216.ec
  10. Käser, L., Mannion, A. F., Rhyner, A., Weber, E., Dvorak, J., & Müntener, M. (2001). Active therapy for chronic low back pain. Spine, 26(8), 909-919. https://doi.org/10.1097/00007632-200104150-00014
  11. Piontkovsky, V. K. (2020). Pathogenesis, diagnosis and surgical treatment of intervertebral disc herniation of the lumbar spine in elderly and senile patients. Diss. of Doctor in Medical Sciences. Kharkiv. [in Ukrainian]
  12. Goubert, D., De Pauw, R., Meeus, M., Willems, T., Cagnie, B., Schouppe, S., ... & Danneels, L. (2017). Lumbar muscle structure and function in chronic versus recurrent low back pain: A cross-sectional study. The Spine Journal, 17(9), 1285-1296. https://doi.org/10.1016/j.spinee.2017.04.025
  13. Crawford, R. J., Elliott, J. M., & Volken, T. (2017). Change in fatty infiltration of lumbar multifidus, erector spinae, and psoas muscles in asymptomatic adults of Asian or Caucasian ethnicities. European Spine Journal, 26(12), 3059-3067. https://doi.org/10.1007/s00586-017-5212-6
  14. Özcan-Ekşi, E. E., Ekşi, M. Ş., & Akçal, M. A. (2019). Severe lumbar Intervertebral disc degeneration is associated with Modic changes and fatty infiltration in the Paraspinal muscles at all lumbar levels, except for L1-L2: A cross-sectional analysis of 50 symptomatic women and 50 age-matched symptomatic men. World Neurosurgery, 122, e1069-e1077. https://doi.org/10.1016/j.wneu.2018.10.229
  15. Radchenko, V. O., Skidanov, A. G., & Morozenko, D. V. (2017). Relative content of different tissues in the paravertebral muscles of the lumbar spine in degenerative diseases and in healthy depending on age. Orthopedics, traumatology and prosthetics, 1, 80–86, https://doi.org/10.15674/0030-59872017180-86. [in Ukrainian]
  16. Urrutia, J., Besa, P., Lobos, D., Campos, M., Arrieta, C., Andia, M., & Uribe, S. (2018). Lumbar paraspinal muscle fat infiltration is independently associated with sex, age, and inter-vertebral disc degeneration in symptomatic patients. Skeletal Radiology, 47(7), 955-961. https://doi.org/10.1007/s00256-018-2880-1
  17. Sions, J. M., Elliott, J. M., Pohlig, R. T., & Hicks, G. E. (2017). Trunk muscle characteristics of the Multifidi, erector Spinae, psoas, and quadratus Lumborum in older adults with and without chronic low back pain. Journal of Orthopaedic & Sports Physical Therapy, 47(3), 173-179. https://doi.org/10.2519/jospt.2017.7002
  18. Yu, B., Jiang, K., Li, X., Zhang, J., & Liu, Z. (2017). Correlation of the features of the lumbar Multifidus muscle with facet joint osteoarthritis. Orthopedics, 40(5). https://doi.org/10.3928/01477447-20170531-05
  19. Hoppe, S., Maurer, D., Valenzuela, W., Benneker, L. M., Bigdon, S. F., Häckel, S., Wangler, S., & Albers, C. E. (2021). 3D analysis of fatty infiltration of the paravertebral lumbar muscles using T2 images—a new approach. European Spine Journal. https://doi.org/10.1007/s00586-021-06810-7
  20. Freeman, M. D., Woodham, M. A., & Woodham, A. W. (2010). The role of the lumbar Multifidus in chronic low back pain: A review. PM&R, 2(2), 142-146. https://doi.org/10.1016/j.pmrj.2009.11.006
  21. Atci, I. B., Yilmaz, H., Samanci, M. Y., Atci, A. G., & Karagoz, Y. (2020). The prevalence of lumbar Paraspinal muscle fatty degeneration in patients with Modic type I and I/II end plate changes. Asian Spine Journal, 14(2), 185-191. https://doi.org/10.31616/asj.2018.0333
  22. Ranger, T. A., Cicuttini, F. M., Jensen, T. S., Peiris, W. L., Hussain, S. M., Fairley, J., & Urquhart, D. M. (2017). Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. The Spine Journal, 17(11), 1729-1748. https://doi.org/10.1016/j.spinee.2017.07.002
  23. Kalichman, L., Carmeli, E., & Been, E. (2017). The association between imaging parameters of the Paraspinal muscles, spinal degeneration, and low back pain. BioMed Research International, 2017, 1-14. https://doi.org/10.1155/2017/2562957
  24. Shahidi, B., Parra, C. L., Berry, D. B., Hubbard, J. C., Gombatto, S., Zlomislic, V., ... & Ward, S. R. (2017). Contribution of lumbar spine pathology and age to Paraspinal muscle size and fatty infiltration. Spine, 42(8), 616-623. https://doi.org/10.1097/brs.0000000000001848
  25. Wang, X., Jia, R., Li, J., Zhu, Y., Liu, H., Wang, W., ... & Zhang, W. (2021). Research progress on the mechanism of Lumbarmultifidus injury and degeneration. Oxidative Medicine and Cellular Longevity, 2021, 1-9. https://doi.org/10.1155/2021/6629037
  26. Lerer, A., Nykamp, S. G., Harriss, A. B., Gibson, T. W., Koch, T. G., & Brown, S. H. (2015). MRI-based relationships between spine pathology, intervertebral disc degeneration, and muscle fatty infiltration in chondrodystrophic and non-chondrodystrophic dogs. The Spine Journal, 15(11), 2433-2439. https://doi.org/10.1016/j.spinee.2015.08.014
  27. Faur, C., Patrascu, J. M., Haragus, H., & Anglitoiu, B. (2019). Correlation between multifidus fatty atrophy and lumbar disc degeneration in low back pain. BMC Musculoskeletal Disorders, 20(1). https://doi.org/10.1186/s12891-019-2786-7
  28. Kim, W. J., Kim, K. J., Song, D. G., Lee, J. S., Park, K. Y., Lee, J. W., Chang, S. H., & Choy, W. S. (2020). Sarcopenia and back muscle degeneration as risk factors for back pain: A comparative study. Asian Spine Journal, 14(3), 364-372. https://doi.org/10.31616/asj.2019.0125
  29. Fortin, M., Videman, T., Gibbons, L. E., & Battié, M. C. (2014). Paraspinal muscle morphology and composition. Medicine & Science in Sports & Exercise, 46(5), 893-901. https://doi.org/10.1249/mss.0000000000000179
  30. Peng, X., Li, X., Xu, Z., Wang, L., Cai, W., Yang, S., Liao, W., & Cheng, X. (2020). Age-related fatty infiltration of lumbar paraspinal muscles: A normative reference database study in 516 Chinese females. Quantitative Imaging in Medicine and Surgery, 10(8), 1590-1601. https://doi.org/10.21037/qims-19-835
  31. Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., ... & Zamboni, M. (2019). Sarcopenia: Revised European consensus on definition and diagnosis. Age and Ageing, 48(4), 601-601. https://doi.org/10.1093/ageing/afz046
  32. Robinson, S., Denison, H., Cooper, C., & Aihie Sayer, A. (2015). Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clinical Interventions in Aging, 859. https://doi.org/10.2147/cia.s55842
  33. Radchenko, V., Skidanov, A., Ashukina, N., Maltseva, V., & Danyshchuk, Z. (2018). Structural features of multifidus muscle in patients with degenerative diseases of the lumbar spine. ScienceRise: Medical Science, 0(6 (26)), 41-49. https://doi.org/10.15587/2519-4798.2018.142525
  34. Colombini, A., Lombardi, G., Corsi, M. M., & Banfi, G. (2008). Pathophysiology of the human intervertebral disc. The International Journal of Biochemistry & Cell Biology, 40(5), 837-842. https://doi.org/10.1016/j.biocel.2007.12.011
  35. Gruber, H. E., & Hanley, E. N. (2002). Ultrastructure of the human Intervertebral disc during aging and degeneration. Spine, 27(8), 798-805. https://doi.org/10.1097/00007632-200204150-00004
  36. Roughley, P. J. (2004). Biology of Intervertebral disc aging and degeneration. Spine, 29(23), 2691-2699. https://doi.org/10.1097/01.brs.0000146101.53784.b1
  37. Rider, S. M., Mizuno, S., & Kang, J. D. (2019). Molecular mechanisms of Intervertebral disc degeneration. Spine Surgery and Related Research, 3(1), 1-11. https://doi.org/10.22603/ssrr.2017-0095
  38. Nerlich, A. G., Schleicher, E. D., & Boos, N. (1997). 1997 Volvo award winner in basic science studies. Spine, 22(24), 2781-2795. https://doi.org/10.1097/00007632-199712150-00001
  39. Urban, J. P., & Winlove, C. P. (2007). Pathophysiology of the intervertebral disc and the challenges for MRI. Journal of Magnetic Resonance Imaging, 25(2), 419-432. https://doi.org/10.1002/jmri.20874
  40. Gellhorn, A. C., Katz, J. N., & Suri, P. (2012). Osteoarthritis of the spine: The facet joints. Nature Reviews Rheumatology, 9(4), 216-224. https://doi.org/10.1038/nrrheum.2012.199
  41. Cooley, J. R., Walker, B. F., M. Ardakani, E., Kjaer, P., Jensen, T. S., & Hebert, J. J. (2018). Relationships between paraspinal muscle morphology and neurocompressive conditions of the lumbar spine: A systematic review with meta-analysis. BMC Musculoskeletal Disorders, 19(1). https://doi.org/10.1186/s12891-018-2266-5
  42. Adams, M. A., Lama, P., Zehra, U., & Dolan, P. (2014). Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clinical Anatomy, 28(2), 195-204. https://doi.org/10.1002/ca.22404
  43. Hayes, A. (2001). Extracellular matrix in development of the intervertebral disc. Matrix Biology, 20(2), 107-121. https://doi.org/10.1016/s0945-053x(01)00125-1
  44. Gagnon, D., Plamondon, A., & Larivière, C. (2018). A comparison of lumbar spine and muscle loading between male and female workers during box transfers. Journal of Biomechanics, 81, 76-85. https://doi.org/10.1016/j.jbiomech.2018.09.017
  45. Burkhart, K., Allaire, B., & Bouxsein, M. L. (2019). Negative effects of long-duration Spaceflight on Paraspinal muscle morphology. Spine, 44(12), 879-886. https://doi.org/10.1097/brs.0000000000002959
  46. Chang, D. G., Healey, R. M., Snyder, A. J., Sayson, J. V., Macias, B. R., Coughlin, D. G., ... & Hargens, A. R. (2016). Lumbar spine Paraspinal muscle and Intervertebral disc height changes in astronauts after long-duration Spaceflight on the international space station. Spine, 41(24), 1917-1924. https://doi.org/10.1097/brs.0000000000001873
  47. Bailey, J. F., Miller, S. L., Khieu, K., O'Neill, C. W., Healey, R. M., Couglin, D. G., ... & Lotz, J. C. (2017). From the international space station to the clinic: How prolonged unloading may disrupt lumbar stability. The Spine Journal, 17(10), S95-S96. https://doi.org/10.1016/j.spinee.2017.09.013
  48. Han, S. K., Lee, Y., Hong, J., Yeo, H., Seo, J., Jeon, C., ... & Lee, S. (2018). In vivo study of paraspinal muscle weakness using botulinum toxin in one primate model. Clinical Biomechanics, 53, 1-6. https://doi.org/10.1016/j.clinbiomech.2018.01.021
  49. Dzik, K. P., Skrobot, W., Kaczor, K. B., Flis, D. J., Karnia, M. J., Libionka, W., ... & Kaczor, J. J. (2019). Vitamin D deficiency is associated with muscle atrophy and reduced mitochondrial function in patients with chronic low back pain. Oxidative Medicine and Cellular Longevity, 2019, 1-11. https://doi.org/10.1155/2019/6835341
  50. Bang, W., Lee, D., Kim, K., Cho, D., Sung, J., Han, I., ... & Seo, Y. (2018). Relationships between vitamin D and paraspinal muscle: Human data and experimental rat model analysis. The Spine Journal, 18(6), 1053-1061. https://doi.org/10.1016/j.spinee.2018.01.007
  51. Colombini, A., Brayda-Bruno, M., Lombardi, G., Croiset, S. J., Vrech, V., Maione, V., Banfi, G., & Cauci, S. (2014). FokI polymorphism in the vitamin D receptor gene (VDR) and its association with lumbar spine pathologies in the Italian population: A case-control study. PLoS ONE, 9(5), e97027. https://doi.org/10.1371/journal.pone.0097027
  52. Chen, L., Zhao, S., Niu, F., & Bi, G. (2017). Association between vitamin D receptor gene polymorphisms and intervertebral disc degeneration: A meta-analysis. Journal of Orthopaedic Science, 22(2), 184-189. https://doi.org/10.1016/j.jos.2016.11.009
  53. Jiang, H., Qin, Z., Zong, S., He, M., Zhan, X., Xiao, Z., & Wei, Q. (2016). Vitamin D receptor gene polymorphisms and lumbar disc degeneration: A systematic review and meta-analysis. European Spine Journal, 26(1), 267-277. https://doi.org/10.1007/s00586-016-4771-2
  54. Shiri, R., Karppinen, J., Leino-Arjas, P., Solovieva, S., & Viikari-Juntura, E. (2009). The association between obesity and low back pain: A meta-analysis. American Journal of Epidemiology, 171(2), 135-154. https://doi.org/10.1093/aje/kwp356
  55. Zhang, T., Liu, Z., Liu, Y., Zhao, J., Liu, D., & Tian, Q. (2018). Obesity as a risk factor for low back pain. Clinical Spine Surgery: A Spine Publication, 31(1), 22-27. https://doi.org/10.1097/bsd.0000000000000468
  56. Hussain, S. M., Urquhart, D. M., Wang, Y., Shaw, J. E., Magliano, D. J., Wluka, A. E., & Cicuttini, F. M. (2017). Fat mass and fat distribution are associated with low back pain intensity and disability: Results from a cohort study. Arthritis Research & Therapy, 19(1). https://doi.org/10.1186/s13075-017-1242-z
  57. Roffey, D. M., Budiansky, A., Coyle, M. J., & Wai, E. K. (2013). Obesity and low back pain: Is there a weight of evidence to support a positive relationship? Current Obesity Reports, 2(3), 241-250. https://doi.org/10.1007/s13679-013-0058-7
  58. Briggs, M. S., Givens, D. L., Schmitt, L. C., & Taylor, C. A. (2013). Relations of C-reactive protein and obesity to the prevalence and the odds of reporting low back pain. Archives of Physical Medicine and Rehabilitation, 94(4), 745-752. https://doi.org/10.1016/j.apmr.2012.11.026
  59. Rojas, J. M., Bolze, F., Thorup, I., Nowak, J., Dalsgaard, C. M., Skydsgaard, M., ... & Dalgaard, M. (2018). The effect of diet-induced obesity on toxicological parameters in the polygenic Sprague-Dawley rat model. Toxicologic Pathology, 46(7), 777-798. https://doi.org/10.1177/0192623318803557
  60. Pinho, R. A., Sepa-Kishi, D. M., Bikopoulos, G., Wu, M. V., Uthayakumar, A., Mohasses, A., ... & Ceddia, R. B. (2017). High-fat diet induces skeletal muscle oxidative stress in a fiber type-dependent Manner in rats. Free Radical Biology and Medicine, 110, 381-389. https://doi.org/10.1016/j.freeradbiomed.2017.07.005
  61. Putti, R., Sica, R., Migliaccio, V., & Lionetti, L. (2015). Diet impact on mitochondrial bioenergetics and dynamics. Frontiers in Physiology, 6. https://doi.org/10.3389/fphys.2015.00109
  62. Putti, R., Migliaccio, V., Sica, R., & Lionetti, L. (2016). Skeletal muscle mitochondrial Bioenergetics and morphology in high fat diet induced obesity and insulin resistance: Focus on dietary fat source. Frontiers in Physiology, 6. https://doi.org/10.3389/fphys.2015.00426
  63. James, G., Chen, X., Diwan, A., & Hodges, P. W. (2020). Fat infiltration in the multifidus muscle is related to inflammatory cytokine expression in the muscle and epidural adipose tissue in individuals undergoing surgery for intervertebral disc herniation. European Spine Journal, 30(4), 837-845. https://doi.org/10.1007/s00586-020-06514-4
  64. Shimabukuro, M. (2017). Leptin resistance and Lipolysis of white adipose tissue: An implication to ectopic fat disposition and its consequences. Journal of Atherosclerosis and Thrombosis, 24(11), 1088-1089. https://doi.org/10.5551/jat.ed083
  65. Verla, T., Adogwa, O., Elsamadicy, A., Moreno, J. R., Farber, H., Cheng, J., & Bagley, C. A. (2016). Effects of psoas muscle thickness on outcomes of lumbar fusion surgery. World Neurosurgery, 87, 283-289. https://doi.org/10.1016/j.wneu.2015.11.022
  66. Stanuszek, A., Jędrzejek, A., Gancarczyk-Urlik, E., Kołodziej, I., Pisarska-Adamczyk, M., Milczarek, O., Trompeta, J., & Chrobak, W. (2021). Preoperative paraspinal and psoas major muscle atrophy and paraspinal muscle fatty degeneration as factors influencing the results of surgical treatment of lumbar disc disease. Archives of Orthopaedic and Trauma Surgery. https://doi.org/10.1007/s00402-021-03754-x
  67. Wang, W., Sun, Z., Li, W., & Chen, Z. (2020). The effect of paraspinal muscle on functional status and recovery in patients with lumbar spinal stenosis. Journal of Orthopaedic Surgery and Research, 15(1). https://doi.org/10.1186/s13018-020-01751-1
  68. Fortin, M., Lazáry, À., Varga, P. P., & Battié, M. C. (2017). Association between paraspinal muscle morphology, clinical symptoms and functional status in patients with lumbar spinal stenosis. European Spine Journal, 26(10), 2543-2551. https://doi.org/10.1007/s00586-017-5228-y
  69. Malakoutian, M., Street, J., & Wilke, H. J. (2016). Role of muscle damage on loading at the level adjacent to a lumbar spine fusion: a biomechanical analysis. European Spine Journal, 25(9), 2929–2937. https://doi.org/10.1007/s00586-016-4686-y
  70. Radchenko, V., Skidanov, A., Ashukina, N., Danishchuk, Z., & Levytskyi, P. (2016). Posterior spinal fusion formation depending on different physical activity in animals. Orthopaedics, Traumatology and Prosthetics, 0(2), 55. https://doi.org/10.15674/0030-59872016255-59
  71. Maas, H., Noort, W., Hodges, P. W., & Van Dieën, J. (2018). Effects of intervertebral disc lesion and multifidus muscle resection on the structure of the lumbar intervertebral discs and paraspinal musculature of the rat. Journal of Biomechanics, 70, 228-234. https://doi.org/10.1016/j.jbiomech.2018.01.004

How to Cite

Radchenko, V. ., Ashukina, N., Maltseva, V. ., Skidanov, M. ., & Skidanov, A. . (2023). Relationship between structural changes in paravertebral muscles and the development of spine degenerative diseases. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 92–99. https://doi.org/10.15674/0030-59872021292-99

Issue

Section

DIGESTS AND REVIEWS