Conceptual model of patho- and sanogenesis of the sacroiliac joint osteoarthritis
DOI:
https://doi.org/10.15674/0030-59872021228-38Keywords:
Pelvic girdle pain, sacroiliac dysfunction, sacroiliac joint ligaments, biomechanics, hypothesisAbstract
Objective. To develop a conceptual model of patho- and sanogenesis of the sacroiliac joint (SIJ) osteoarthritis on base of the known data about the SIJ, the results of our own biomechanical studies of this joint, its ligaments and stabilizing muscles by finite element modelling, data of clinical verification of these results. Methods. The object of the model is the SIJ as a link, which connects the spine and pelvis. The proposed conceptual model is based on the M. Panjabi hypothesis of chronic lumbar pain in the case of partial damage to ligaments, which leads to muscle dysfunction. Results. A new conceptual model of SIJ osteoarthritis was developed. In this model we tried to take into account the limitations of the existing SIJ stability hypotheses and models of the appearance of the pelvic girdle pain, SIJ dysfunction and SIJ arthrosis. The model is based on the results of our own research. It was proved, that patients with SIJ osteoarthritis have an asymmetry of the width of the joint slits, the inclination of the sacrum and pelvis, sacral rotation, hyperlordosis in the LV–SI segment. These factors lead to a shift of the horizontal axis of sacral rotational mobility relative to the pelvic bones. This horizontal axis shift leads to the instability of the SIJ on one side of the joint, and to the functional block on another side. The results of these functional changes were damage of the SIJ ligaments-stabilizers, dysfunction of the SIJ muscles-stabilizers, degenerative changes of SIJ elements and pain. The developed model allows to explain the distortion of muscular response pattern in patients with improper SIJ biomechanics in conditions of SIJ osteoarthritis. The increase of the SIJ biomechanics changes enlarges the the muscle response pattern distortion. Conclusions. The developed conceptual model explains many clinical manifestations of the SIJ osteoarthritis and will help to understand better the mechanics of the pelvic girdle pain in such conditions, will improve the results of diagnosis and treatment.
References
- Barros, G., McGrath, L., & Gelfenbeyn, M. (2019). Sacroiliac joint dysfunction in patients with low back pain. Federal practitioner, 36(8), 370–375
- Perlman, R., Golan, J., & Lugo, M. (2016). Diagnosis of sacroiliac joint syndrome in low back/pelvic pain: reliability of 3 key clinical signs. 9th Interdisciplinary World Congress on Low Back and Pelvic Girdle Pain. Singapore
- Rupert, M. P. (2009). Evaluation of sacroiliac joint interventions: ASystematic appraisal of the literature. Pain Physician, 2;12(2;3), 399-418. https://doi.org/10.36076/ppj.2009/12/399
- Asil, K., & Yaldiz, C. (2018). Retrospective assessment of early changes in the sacroiliac joint after posterior lumbar fusion surgery via magnetic resonance imaging and computed tomography. World Neurosurgery, 120, e546-e550. https://doi.org/10.1016/j.wneu.2018.08.127
- Duhon, B. S., Bitan, F., Lockstadt, H., Kovalsky, D., Cher, D., & Hillen, T. (2016). Triangular titanium implants for minimally invasive sacroiliac joint fusion: 2-Year follow-up from a prospective multicenter trial. International Journal of Spine Surgery, 10, 13. https://doi.org/10.14444/3013
- Finger, T., Bayerl, S., Bertog, M., Czabanka, M., Woitzik, J., & Vajkoczy, P. (2016). Impact of sacropelvic fixation on the development of postoperative sacroiliac joint pain following multilevel stabilization for degenerative spine disease. Clinical Neurology and Neurosurgery, 150, 18-22. https://doi.org/10.1016/j.clineuro.2016.08.009
- Ha, K., Lee, J., & Kim, K. (2008). Degeneration of sacroiliac joint after instrumented lumbar or Lumbosacral fusion. Spine, 33(11), 1192-1198. https://doi.org/10.1097/brs.0b013e318170fd35
- Polly, D. W., Cher, D. J., Wine, K. D., Whang, P. G., Frank, C. J., Harvey, C. F., ... & Sembrano, J. N. (2015). Randomized controlled trial of minimally invasive sacroiliac joint fusion using triangular titanium implants vs Nonsurgical management for sacroiliac joint dysfunction. Neurosurgery, 77(5), 674-691. https://doi.org/10.1227/neu.0000000000000988
- Vleeming, A., Albert, H. B., Östgaard, H. C., Sturesson, B., & Stuge, B. (2008). European guidelines for the diagnosis and treatment of pelvic girdle pain. European Spine Journal, 17(6), 794-819. https://doi.org/10.1007/s00586-008-0602-4
- Snijders, C., Vleeming, A., & Stoeckart, R. (1993). Transfer of lumbosacral load to iliac bones and legs. Clinical Biomechanics, 8(6), 285-294. https://doi.org/10.1016/0268-0033(93)90002-y
- Snijders, C., Vleeming, A., & Stoeckart, R. (1993). Transfer of lumbosacral load to iliac bones and legs. Clinical Biomechanics, 8(6), 295-301. https://doi.org/10.1016/0268-0033(93)90003-z
- Vleeming, A. (1990). The sacroiliac joint. A clinical-anatomical, biomechanical and radiological study : Thesis. Rotterdam : Erasmus University
- Bogduk, N. (2005). Clinical anatomy of the lumbar spine and sacrum. New York : Elsevier Health Sciences
- Sturesson, B., Selvik, G., & Udén, A. (1989). Movements of the sacroiliac joints. Spine, 14(2), 162-165. doi:10.1097/00007632-198902000-00004
- DonTigny, R. L. (2005). Critical analysis of the functional dynamics of the sacroiliac joints as they pertain to normal gait. Journal of Orthopaedic Medicine, 27(1), 3-10. https://doi.org/10.1080/1355297x.2005.11736245
- Vleeming, A., Stoeckart, R., Volkers, A. C., & Snijders, C. J. (1990). Relation between form and function in the sacroiliac joint. Spine, 15(2), 130-132. https://doi.org/10.1097/00007632-199002000-00016
- Vleeming, A., Volkers, A. C., Snijders, C. J., & Stoeckart, R. (1990). Relation between form and function in the sacroiliac joint. Spine, 15(2), 133-136. https://doi.org/10.1097/00007632-199002000-00017
- Vleeming, A., Albert, H. B., Östgaard, H. C., Sturesson, B., & Stuge, B. (2008). European guidelines for the diagnosis and treatment of pelvic girdle pain. European Spine Journal, 17(6), 794-819. https://doi.org/10.1007/s00586-008-0602-4
- Gracovetsky, S. (2005). Stability or controlled instability? Movement, Stability & Lumbopelvic Pain, 279-294. https://doi.org/10.1016/b978-044310178-6.50021-9
- Panjabi, M. M. (1992). The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Journal of Spinal Disorders, 5(4), 383-389. https://doi.org/10.1097/00002517-199212000-00001
- Panjabi, M. M. (1992). The stabilizing system of the spine. Part II. Neutral Zone and instability hypothesis. Journal of Spinal Disorders, 5(4), 390-397. https://doi.org/10.1097/00002517-199212000-00002
- Panjabi, M. M., Lydon, C., Vasavada, A., Grab, D., Crisco, J. J., & Dvorak, J. (1994). On the understanding of clinical instability. Spine, 19(23), 2642-2650. https://doi.org/10.1097/00007632-199412010-00008
- Stecco, C., Hammer, W., Vleeming, A., & De Caro, R. (2015). Connective tissues. Functional Atlas of the Human Fascial System, 1-20. https://doi.org/10.1016/b978-0-7020-4430-4.00001-4
- Sturesson, B., Uden, A., & Vleeming, A. (2000). A Radiostereometric analysis of the movements of the sacroiliac joints in the reciprocal straddle position. Spine, 25(2), 214. https://doi.org/10.1097/00007632-200001150-00012
- Panjabi, M. M. (2005). A hypothesis of chronic back pain: Ligament subfailure injuries lead to muscle control dysfunction. European Spine Journal, 15(5), 668-676. https://doi.org/10.1007/s00586-005-0925-3
- Staude, V. A., Radzishevskaya, E. B., & Zlatnik, R. V. (2019). Degenerative changes in the sacroiliac joint in patients after spondylosis of the spinal motor segment LV-SI. Orthopedics, Traumatology and Prosthetics, 1, 14–18. https://doi.org/10.15674/0030-59872019114-18. [in Russian]
- Korzh, N. A., Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2015). Stress-strain state of the kinematic chain of the lumbar spine - sacrum - pelvis with asymmetry of the joint spaces of the sacroiliac joint. Orthopedics, Traumatology and Prosthetics, 3, 5–13. https://doi.org/10.15674/0030-5987201535-13. [in Russian]
- Korzh, N. A., Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2016). Stress-strain state of the lumbar spine-sacrum-pelvis system with frontal pelvic tilt. Orthopedics, Traumatology and Prosthetics, 1, 54–61. https://doi.org/10.15674/0030-59872016154-61. [in Russian]
- Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2012). Numerical modeling and analysis of the stress-strain state of the kinematic chain of the lumbar spine – sacrum – pelvis with unilateral blocking of the sacroiliac joint. Orthopedics, Traumatology and Prosthetics, 4, 13–19. https://doi.org/10.15674/0030-59872012413-19. [in Russian]
- Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2015). Numerical modeling and analysis of the stress-strain state of the kinematic chain of the lumbar spine - sacrum - pelvis, taking into account the main ligaments of the sacroiliac joint. Orthopedics, Traumatology and Prosthetics, 1, 34–41. https://doi.org/10.15674/0030-59872015134-41. [in Russian]
- Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2012). Numerical modeling and analysis of the stress-strain state of the kinematic chain "lumbar spine - sacrum - pelvis" in different variants of lumbar lordosis. Orthopedics, traumatology and prosthetics, 2, 50–56. https://doi.org/10.15674/0030-59872012250-56. [in Russian]
- Staude, V. A., Radzishevskaya, E. B., & Zlatnik, R. V. (2017). X-ray parameters of the sacrum and pelvis in patients with dysfunction of the sacroiliac joint, affecting the spinal-pelvic balance in the frontal plane. Orthopedics, traumatology and prosthetics, 3, 54–62. https://doi.org/10.15674/0030-59872017354-62. [in Russian]
- Staude, V. A., Radzishevskaya, E. B., & Zlatnik, R. V. (2018). Radiometric parameters of the lower segmental lordosis of the lumbar spine and their relationship with the inclination of the pelvis and sacrum in the frontal plane in patients with sacroiliac joint dysfunction. Orthopedics, traumatology and prosthetics, 4, 31–41. https://doi.org/10.15674/0030-59872018431-41. [in Russian]
- Staude, V. A., Radzishevskaya, E. B., & Zlatnik, R. V. (2018). Degenerative changes in the sacroiliac joint in patients with its dysfunction. Orthopedics, traumatology and prosthetics, 2, 22–27. https://doi.org/10.15674/0030-59872018222-27. [in Russian]
- Staude, V. A., Radzishevskaya, E. B., & Duplij, D. R. (2018). Bioelectrical activity of stabilizing muscles of the sacroiliac joint in patients with dysfunction of this joint. Trauma, 19(4), 29–40. https://doi.org/10.22141/1608-1706.4.19.2018.142103. [in Russian]
- Benjamin, M., Toumi, H., Ralphs, J. R., Bydder, G., Best, T. M., & Milz, S. (2006). Where tendons and ligaments meet bone: Attachment sites ('entheses') in relation to exercise and/or mechanical load. Journal of Anatomy, 208(4), 471-490. https://doi.org/10.1111/j.1469-7580.2006.00540.x
- Mc Kay, M. J. (2016). Unique mechanism for lumbar musculoskeletal pain defined from primary care research into periosteal enthesis response to biomechanical stress and formation of small fibre polyneuropathy. Proceeding of 9th Interdisciplinary World Congress on Low Back and Pelvic Girdle Pain. Singapore
- Palesy, P. D. (1997). Tendon and ligament insertions—A possible source of musculoskeletal pain. CRANIO®, 15(3), 194-202. https://doi.org/10.1080/08869634.1997.11746012
- Dontigny, R. L. (2007). A detailed and critical biomechanical analysis of the sacroiliac joints and relevant kinesiology: the implications for lumbopelvic function and dysfunction. Movement, Stability & Lumbopelvic Pain. Edinburg : Churchill Livingstone, 2007
- Tanaka, N., An, H. S., Lim, T., Fujiwara, A., Jeon, C., & Haughton, V. M. (2001). The relationship between disc degeneration and flexibility of the lumbar spine. The Spine Journal, 1(1), 47-56. https://doi.org/10.1016/s1529-9430(01)00006-7
- Korzh, N. A., Staude, V. A., & Radzishevskaya, E. B. (2018). Interrelation of X-ray parameters of lower-segmental lordosis and support ability of the sacroiliac joint in patients with its dysfunction with conservative treatment. Orthopedics, traumatology and prosthetics, 3, 29–38. https://doi.org/:10.15674/0030-59872018329-38. [in Russian]
- Kirkaldy-Willis, W. H., & Farfan, H. F. (1982). Instability of the lumbar spine. Clinical Orthopaedics and Related Research,&NA;(165), 110–123. https://doi.org/10.1097/00003086-198205000-00015
- Oxland, T. R., Crisco, J. J., Panjabi, M. M., & Yamamoto, I. (1992). The effect of injury on rotational coupling at the Lumbosacral joint. Spine, 17(1), 74-80. https://doi.org/10.1097/00007632-199201000-00012
- Adams, M., Bogduk, N., Burton, K., & Dolan, P. (2012). The biomechanics of back pain. 3rd ed. Churchill Livingstone
Downloads
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).