Conceptual model of patho- and sanogenesis of the sacroiliac joint osteoarthritis

Authors

  • Mykola Korzh Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0002-0489-3104
  • Volodymyr Staude Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine

DOI:

https://doi.org/10.15674/0030-59872021228-38

Keywords:

Pelvic girdle pain, sacroiliac dysfunction, sacroiliac joint ligaments, biomechanics, hypothesis

Abstract

Objective. To develop a conceptual model of patho- and sanogene­sis of the sacroiliac joint (SIJ) osteoarthritis on base of the known data about the SIJ, the results of our own biomechanical studies of this joint, its ligaments and stabilizing muscles by finite element modelling, data of clinical verification of these results. Methods. The object of the model is the SIJ as a link, which connects the spine and pelvis. The proposed conceptual model is based on the M. Panjabi hypothesis of chronic lumbar pain in the case of partial dama­ge to ligaments, which leads to muscle dysfunction. Results. A new conceptual model of SIJ osteoarthritis was developed. In this model we tried to take into account the limitations of the existing SIJ stability hypotheses and models of the appearance of the pelvic girdle pain, SIJ dysfunction and SIJ arthrosis. The model is based on the results of our own research. It was proved, that patients with SIJ osteoarthritis have an asymmetry of the width of the joint slits, the inclination of the sacrum and pelvis, sacral rotation, hyperlordosis in the LV–SI segment. These factors lead to a shift of the horizontal axis of sacral rotational mobility relative to the pelvic bones. This horizontal axis shift leads to the instabili­ty of the SIJ on one side of the joint, and to the functional block on another side. The results of these functional changes were damage of the SIJ ligaments-stabilizers, dysfunction of the SIJ muscles-stabilizers, degenerative changes of SIJ elements and pain. The deve­loped model allows to explain the distortion of muscular response pattern in patients with improper SIJ biomechanics in conditions of SIJ osteoarthritis. The increase of the SIJ biomechanics changes enlarges the the muscle response pattern distortion. Conclusions. The developed conceptual model explains many clinical manifestations of the SIJ osteoarthritis and will help to understand better the mechanics of the pelvic girdle pain in such conditions, will improve the results of diagnosis and treatment.

Author Biographies

Mykola Korzh, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Traumatology and Orthopaedics

Volodymyr Staude, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

DMSci in Orthopaedics and Traumatology

References

  1. Barros, G., McGrath, L., & Gelfenbeyn, M. (2019). Sacroiliac joint dysfunction in patients with low back pain. Federal practitioner, 36(8), 370–375
  2. Perlman, R., Golan, J., & Lugo, M. (2016). Diagnosis of sacroiliac joint syndrome in low back/pelvic pain: reliability of 3 key clinical signs. 9th Interdisciplinary World Congress on Low Back and Pelvic Girdle Pain. Singapore
  3. Rupert, M. P. (2009). Evaluation of sacroiliac joint interventions: ASystematic appraisal of the literature. Pain Physician, 2;12(2;3), 399-418. https://doi.org/10.36076/ppj.2009/12/399
  4. Asil, K., & Yaldiz, C. (2018). Retrospective assessment of early changes in the sacroiliac joint after posterior lumbar fusion surgery via magnetic resonance imaging and computed tomography. World Neurosurgery, 120, e546-e550. https://doi.org/10.1016/j.wneu.2018.08.127
  5. Duhon, B. S., Bitan, F., Lockstadt, H., Kovalsky, D., Cher, D., & Hillen, T. (2016). Triangular titanium implants for minimally invasive sacroiliac joint fusion: 2-Year follow-up from a prospective multicenter trial. International Journal of Spine Surgery, 10, 13. https://doi.org/10.14444/3013
  6. Finger, T., Bayerl, S., Bertog, M., Czabanka, M., Woitzik, J., & Vajkoczy, P. (2016). Impact of sacropelvic fixation on the development of postoperative sacroiliac joint pain following multilevel stabilization for degenerative spine disease. Clinical Neurology and Neurosurgery, 150, 18-22. https://doi.org/10.1016/j.clineuro.2016.08.009
  7. Ha, K., Lee, J., & Kim, K. (2008). Degeneration of sacroiliac joint after instrumented lumbar or Lumbosacral fusion. Spine, 33(11), 1192-1198. https://doi.org/10.1097/brs.0b013e318170fd35
  8. Polly, D. W., Cher, D. J., Wine, K. D., Whang, P. G., Frank, C. J., Harvey, C. F., ... & Sembrano, J. N. (2015). Randomized controlled trial of minimally invasive sacroiliac joint fusion using triangular titanium implants vs Nonsurgical management for sacroiliac joint dysfunction. Neurosurgery, 77(5), 674-691. https://doi.org/10.1227/neu.0000000000000988
  9. Vleeming, A., Albert, H. B., Östgaard, H. C., Sturesson, B., & Stuge, B. (2008). European guidelines for the diagnosis and treatment of pelvic girdle pain. European Spine Journal, 17(6), 794-819. https://doi.org/10.1007/s00586-008-0602-4
  10. Snijders, C., Vleeming, A., & Stoeckart, R. (1993). Transfer of lumbosacral load to iliac bones and legs. Clinical Biomechanics, 8(6), 285-294. https://doi.org/10.1016/0268-0033(93)90002-y
  11. Snijders, C., Vleeming, A., & Stoeckart, R. (1993). Transfer of lumbosacral load to iliac bones and legs. Clinical Biomechanics, 8(6), 295-301. https://doi.org/10.1016/0268-0033(93)90003-z
  12. Vleeming, A. (1990). The sacroiliac joint. A clinical-anatomical, biomechanical and radiological study : Thesis. Rotterdam : Erasmus University
  13. Bogduk, N. (2005). Clinical anatomy of the lumbar spine and sacrum. New York : Elsevier Health Sciences
  14. Sturesson, B., Selvik, G., & Udén, A. (1989). Movements of the sacroiliac joints. Spine, 14(2), 162-165. doi:10.1097/00007632-198902000-00004
  15. DonTigny, R. L. (2005). Critical analysis of the functional dynamics of the sacroiliac joints as they pertain to normal gait. Journal of Orthopaedic Medicine, 27(1), 3-10. https://doi.org/10.1080/1355297x.2005.11736245
  16. Vleeming, A., Stoeckart, R., Volkers, A. C., & Snijders, C. J. (1990). Relation between form and function in the sacroiliac joint. Spine, 15(2), 130-132. https://doi.org/10.1097/00007632-199002000-00016
  17. Vleeming, A., Volkers, A. C., Snijders, C. J., & Stoeckart, R. (1990). Relation between form and function in the sacroiliac joint. Spine, 15(2), 133-136. https://doi.org/10.1097/00007632-199002000-00017
  18. Vleeming, A., Albert, H. B., Östgaard, H. C., Sturesson, B., & Stuge, B. (2008). European guidelines for the diagnosis and treatment of pelvic girdle pain. European Spine Journal, 17(6), 794-819. https://doi.org/10.1007/s00586-008-0602-4
  19. Gracovetsky, S. (2005). Stability or controlled instability? Movement, Stability & Lumbopelvic Pain, 279-294. https://doi.org/10.1016/b978-044310178-6.50021-9
  20. Panjabi, M. M. (1992). The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Journal of Spinal Disorders, 5(4), 383-389. https://doi.org/10.1097/00002517-199212000-00001
  21. Panjabi, M. M. (1992). The stabilizing system of the spine. Part II. Neutral Zone and instability hypothesis. Journal of Spinal Disorders, 5(4), 390-397. https://doi.org/10.1097/00002517-199212000-00002
  22. Panjabi, M. M., Lydon, C., Vasavada, A., Grab, D., Crisco, J. J., & Dvorak, J. (1994). On the understanding of clinical instability. Spine, 19(23), 2642-2650. https://doi.org/10.1097/00007632-199412010-00008
  23. Stecco, C., Hammer, W., Vleeming, A., & De Caro, R. (2015). Connective tissues. Functional Atlas of the Human Fascial System, 1-20. https://doi.org/10.1016/b978-0-7020-4430-4.00001-4
  24. Sturesson, B., Uden, A., & Vleeming, A. (2000). A Radiostereometric analysis of the movements of the sacroiliac joints in the reciprocal straddle position. Spine, 25(2), 214. https://doi.org/10.1097/00007632-200001150-00012
  25. Panjabi, M. M. (2005). A hypothesis of chronic back pain: Ligament subfailure injuries lead to muscle control dysfunction. European Spine Journal, 15(5), 668-676. https://doi.org/10.1007/s00586-005-0925-3
  26. Staude, V. A., Radzishevskaya, E. B., & Zlatnik, R. V. (2019). Degenerative changes in the sacroiliac joint in patients after spondylosis of the spinal motor segment LV-SI. Orthopedics, Traumatology and Prosthetics, 1, 14–18. https://doi.org/10.15674/0030-59872019114-18. [in Russian]
  27. Korzh, N. A., Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2015). Stress-strain state of the kinematic chain of the lumbar spine - sacrum - pelvis with asymmetry of the joint spaces of the sacroiliac joint. Orthopedics, Traumatology and Prosthetics, 3, 5–13. https://doi.org/10.15674/0030-5987201535-13. [in Russian]
  28. Korzh, N. A., Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2016). Stress-strain state of the lumbar spine-sacrum-pelvis system with frontal pelvic tilt. Orthopedics, Traumatology and Prosthetics, 1, 54–61. https://doi.org/10.15674/0030-59872016154-61. [in Russian]
  29. Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2012). Numerical modeling and analysis of the stress-strain state of the kinematic chain of the lumbar spine – sacrum – pelvis with unilateral blocking of the sacroiliac joint. Orthopedics, Traumatology and Prosthetics, 4, 13–19. https://doi.org/10.15674/0030-59872012413-19. [in Russian]
  30. Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2015). Numerical modeling and analysis of the stress-strain state of the kinematic chain of the lumbar spine - sacrum - pelvis, taking into account the main ligaments of the sacroiliac joint. Orthopedics, Traumatology and Prosthetics, 1, 34–41. https://doi.org/10.15674/0030-59872015134-41. [in Russian]
  31. Staude, V. A., Kondratyev, A. V., & Karpinsky, M. Yu. (2012). Numerical modeling and analysis of the stress-strain state of the kinematic chain "lumbar spine - sacrum - pelvis" in different variants of lumbar lordosis. Orthopedics, traumatology and prosthetics, 2, 50–56. https://doi.org/10.15674/0030-59872012250-56. [in Russian]
  32. Staude, V. A., Radzishevskaya, E. B., & Zlatnik, R. V. (2017). X-ray parameters of the sacrum and pelvis in patients with dysfunction of the sacroiliac joint, affecting the spinal-pelvic balance in the frontal plane. Orthopedics, traumatology and prosthetics, 3, 54–62. https://doi.org/10.15674/0030-59872017354-62. [in Russian]
  33. Staude, V. A., Radzishevskaya, E. B., & Zlatnik, R. V. (2018). Radiometric parameters of the lower segmental lordosis of the lumbar spine and their relationship with the inclination of the pelvis and sacrum in the frontal plane in patients with sacroiliac joint dysfunction. Orthopedics, traumatology and prosthetics, 4, 31–41. https://doi.org/10.15674/0030-59872018431-41. [in Russian]
  34. Staude, V. A., Radzishevskaya, E. B., & Zlatnik, R. V. (2018). Degenerative changes in the sacroiliac joint in patients with its dysfunction. Orthopedics, traumatology and prosthetics, 2, 22–27. https://doi.org/10.15674/0030-59872018222-27. [in Russian]
  35. Staude, V. A., Radzishevskaya, E. B., & Duplij, D. R. (2018). Bioelectrical activity of stabilizing muscles of the sacroiliac joint in patients with dysfunction of this joint. Trauma, 19(4), 29–40. https://doi.org/10.22141/1608-1706.4.19.2018.142103. [in Russian]
  36. Benjamin, M., Toumi, H., Ralphs, J. R., Bydder, G., Best, T. M., & Milz, S. (2006). Where tendons and ligaments meet bone: Attachment sites ('entheses') in relation to exercise and/or mechanical load. Journal of Anatomy, 208(4), 471-490. https://doi.org/10.1111/j.1469-7580.2006.00540.x
  37. Mc Kay, M. J. (2016). Unique mechanism for lumbar musculoskeletal pain defined from primary care research into periosteal enthesis response to biomechanical stress and formation of small fibre polyneuropathy. Proceeding of 9th Interdisciplinary World Congress on Low Back and Pelvic Girdle Pain. Singapore
  38. Palesy, P. D. (1997). Tendon and ligament insertions—A possible source of musculoskeletal pain. CRANIO®, 15(3), 194-202. https://doi.org/10.1080/08869634.1997.11746012
  39. Dontigny, R. L. (2007). A detailed and critical biomechanical analysis of the sacroiliac joints and relevant kinesiology: the implications for lumbopelvic function and dysfunction. Movement, Stability & Lumbopelvic Pain. Edinburg : Churchill Livingstone, 2007
  40. Tanaka, N., An, H. S., Lim, T., Fujiwara, A., Jeon, C., & Haughton, V. M. (2001). The relationship between disc degeneration and flexibility of the lumbar spine. The Spine Journal, 1(1), 47-56. https://doi.org/10.1016/s1529-9430(01)00006-7
  41. Korzh, N. A., Staude, V. A., & Radzishevskaya, E. B. (2018). Interrelation of X-ray parameters of lower-segmental lordosis and support ability of the sacroiliac joint in patients with its dysfunction with conservative treatment. Orthopedics, traumatology and prosthetics, 3, 29–38. https://doi.org/:10.15674/0030-59872018329-38. [in Russian]
  42. Kirkaldy-Willis, W. H., & Farfan, H. F. (1982). Instability of the lumbar spine. Clinical Orthopaedics and Related Research,&NA;(165), 110–123. https://doi.org/10.1097/00003086-198205000-00015
  43. Oxland, T. R., Crisco, J. J., Panjabi, M. M., & Yamamoto, I. (1992). The effect of injury on rotational coupling at the Lumbosacral joint. Spine, 17(1), 74-80. https://doi.org/10.1097/00007632-199201000-00012
  44. Adams, M., Bogduk, N., Burton, K., & Dolan, P. (2012). The biomechanics of back pain. 3rd ed. Churchill Livingstone

How to Cite

Korzh, M. ., & Staude, V. (2023). Conceptual model of patho- and sanogenesis of the sacroiliac joint osteoarthritis. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 28–38. https://doi.org/10.15674/0030-59872021228-38

Issue

Section

ORIGINAL ARTICLES