Morphometry of the shoulder joint and justification of new modular reverse shoulder endoprosthesis sizes using computed tomography data
DOI:
https://doi.org/10.15674/0030-59872021151-61Keywords:
3D-printing, arthroplasty of the shoulder joint, glenoid, cluster analysis, correlation analysisAbstract
Reverse shoulder arthroplasty is effective surgery because most of patients have positive long-term results. However, the search for the «perfect» endoprosthesis continues. Objective. To justify the dimensions of a new modular reverse shoulder endoprosthesis using additive technologies based on spiral computed tomography data. Methods. Two data sets of healthy shoulder joints (right — R, left — L) of 100 patients obtained on a spiral computed tomography AQUILION 128 sections (Toshiba, Japan) were processed. Each set consisted of 11 morphometric parameters — linear and angular values. For each of them, three data samples (combined, R and L) are calculated: minimum, maximum, mode, median, mean, standard deviation, distribution asymmetry coefficient. Pearson’s correlation coefficient was calculated, cluster analysis was performed. Results. It is proved that most of the parameters of R and L data sets can be considered homogeneous and can be analyzed as a combined group of 200 cases. It was found that the width and height of the glenoid are more homogeneous data sets, and the value of the endosteal diameter of the humerus decreases in the distal direction. The cervical-diaphyseal angle averages 137.4° ± 4.66°. The correlation between different parameters is more pronounced within most clusters than in the sample as a whole. Conclusions. It is necessary to create different sizes of the distal part of the conical stem, to which securely fix a wide proximal part, as well as in different sizes, in the form of a cup for fixing the liner. The height of the proximal part of the reverse shoulder endoprosthesis should be not less than 20 mm, the diameter of the base of the proximal parts of the stem — 38, 40, 42 mm. It is proposed to use a conical stem of the implant with a wider proximal part, to create the angle 135° between the cup of the proximal part and the stem. Three standard sizes of basic glenoid plates with a diameter of 26, 30, 32 mm are defined. Key words. 3D-printing, arthroplasty of the shoulder joint, glenoid, cluster analysis, correlation analysis.
References
- Grubhofer, F., Wieser, K., Meyer, D. C., Catanzaro, S., Beeler, S., Riede, U., & Gerber, C. (2016). Reverse total shoulder arthroplasty for acute head-splitting, 3- and 4-part fractures of the proximal humerus in the elderly. Journal of Shoulder and Elbow Surgery, 25(10), 1690-1698. https://doi.org/10.1016/j.jse.2016.02.024
- Monir, J. G., Abeyewardene, D., King, J. J., Wright, T. W., & Schoch, B. S. (2020). Reverse shoulder arthroplasty in patients younger than 65 years, minimum 5-year follow-up. Journal of Shoulder and Elbow Surgery, 29(6), e215-e221. https://doi.org/10.1016/j.jse.2019.10.028
- Davey, M. G., Davey, M. S., Hurley, E. T., Gaafar, M., Pauzenberger, L., & Mullett, H. (2021). Return to sport following reverse shoulder arthroplasty: A systematic review. Journal of Shoulder and Elbow Surgery, 30(1), 216-221. https://doi.org/10.1016/j.jse.2020.08.006
- Lorenzetti, A. J., Stone, G. P., Simon, P., & Frankle, M. A. (2016). Biomechanics of reverse shoulder arthroplasty: current concepts. Instructional Course Lectures, 65, 127–143.
- Helmkamp, J. K., Bullock, G. S., Amilo, N. R., Guerrero, E. M., Ledbetter, L. S., Sell, T. C., & Garrigues, G. E. (2018). The clinical and radiographic impact of center of rotation lateralization in reverse shoulder arthroplasty: A systematic review. Journal of Shoulder and Elbow Surgery, 27(11), 2099-2107. https://doi.org/10.1016/j.jse.2018.07.007
- Wright, T., Samitier, G., Alentorn-Geli, E., & Torrens, C. (2015). Reverse shoulder arthroplasty. Part 1: Systematic review of clinical and functional outcomes. International Journal of Shoulder Surgery, 9(1), 24. https://doi.org/10.4103/0973-6042.150226
- Boileau, P., Gauci, M., Wagner, E. R., Clowez, G., Chaoui, J., Chelli, M., & Walch, G. (2019). The reverse shoulder arthroplasty angle: A new measurement of glenoid inclination for reverse shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 28(7), 1281-1290. https://doi.org/10.1016/j.jse.2018.11.074
- Hengg, C., Mayrhofer, P., Euler, S., Wambacher, M., Blauth, M., & Kralinger, F. (2015). The relevance of neutral arm positioning for true Ap-view X-ray to provide true projection of the humeral head shaft angle. Archives of Orthopaedic and Trauma Surgery, 136(2), 213-221. https://doi.org/10.1007/s00402-015-2368-6
- Kadavkolan, A. S., & Jawhar, A. (2018). Glenohumeral joint morphometry with reference to anatomic shoulder arthroplasty. Current Orthopaedic Practice, 29(1), 71-83. https://doi.org/10.1097/bco.0000000000000552
- Rouleau, D. M., Kidder, J. F., Pons-Villanueva, J., Dynamidis, S., Defranco, M., & Walch, G. (2010). Glenoid version: How to measure it? Validity of different methods in two-dimensional computed tomography scans. Journal of Shoulder and Elbow Surgery, 19(8), 1230-1237. https://doi.org/10.1016/j.jse.2010.01.027
- McPherson, E. J., Friedman, R. J., An, Y. H., Chokesi, R., & Dooley, R. (1997). Anthropometric study of normal glenohumeral relationships. Journal of Shoulder and Elbow Surgery, 6(2), 105-112. https://doi.org/10.1016/s1058-2746(97)90030-6
- Boileau, P., & Walch, G. (1997). The three-dimensional geometry of the proximal humerus. The Journal of Bone and Joint Surgery. British volume, 79-B(5), 857-865. https://doi.org/10.1302/0301-620x.79b5.0790857
- Erşen, A., Birişik, F., Bayram, S., Şahinkaya, T., Demirel, M., Atalar, A. C., & Demirhan, M. (2019). Isokinetic evaluation of shoulder strength and endurance after reverse shoulder arthroplasty: A comparative study. Acta Orthopaedica et Traumatologica Turcica, 53(6), 452-456. https://doi.org/10.1016/j.aott.2019.08.001
- Assunção, J., Malavolta, E., Beraldo, R., Gracitelli, M., Bordalo-Rodrigues, M., & Ferreira Neto, A. (2017). Impact of shoulder rotation on neck-shaft angle: A clinical study. Orthopaedics & Traumatology: Surgery & Research, 103(6), 865-868. https://doi.org/10.1016/j.otsr.2017.04.007
- Ferle, M., Pastor, M., Hagenah, J., Hurschler, C., & Smith, T. (2019). Effect of the humeral neck-shaft angle and glenosphere lateralization on stability of reverse shoulder arthroplasty: A cadaveric study. Journal of Shoulder and Elbow Surgery, 28(5), 966-973. https://doi.org/10.1016/j.jse.2018.10.025
- Rapidelli, M., & Gambrioli, P. L. (1986). Glenohurneral Osteometry by computed tomography in normal and unstable shoulders. Clinical Orthopaedics and Related Research, (208), 151–156. https://doi.org/10.1097/00003086-198607000-00030
- Xiaowei Xu, Ester, M., Kriegel, H., & Sander, J. (n.d.). A distribution-based clustering algorithm for mining in large spatial databases. Proceedings 14th International Conference on Data Engineering. https://doi.org/10.1109/icde.1998.655795
- Matsen, F., Sperling, J., & Lippitt, S. (2016). Rockwood and Matsen’s The Shoulder. Elsevier
- Boileau, P., Moineau, G., Roussanne, Y., & O’Shea, K. (2017). BONY increased offset-reversed shoulder arthroplasty (BIO-RSA). JBJS Essential Surgical Techniques, 7(4), e37. https://doi.org/10.2106/jbjs.st.17.00006
- Iyem, C., Serbest, S., & Inal, M. (2017). A morphometric evaluation of the humeral component in shoulder arthroplasty. Biomedical Research, 28(6), 2666–2672.
- Pearl, M. L., Kurutz, S., & Postachini, R. (2009). Geometric variables in anatomic replacement of the proximal humerus: How much prosthetic geometry is necessary? Journal of Shoulder and Elbow Surgery, 18(3), 366-370. https://doi.org/10.1016/j.jse.2009.01.011
- Jeong, J., & Jung, H. (2015). Optimizing intramedullary entry location on the proximal humerus based on variations of neck-shaft angle. Journal of Shoulder and Elbow Surgery, 24(9), 1386-1390. https://doi.org/10.1016/j.jse.2015.01.016
- Verstraeten, T., De Wilde, L., & Victor, J. (2018). The normal 3D gleno-humeral relationship and anatomy of the glenoid planes. Journal of the Belgian Society of Radiology, 102(1). https://doi.org/10.5334/jbsr.1346
Downloads
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).