Systematic review and meta-analysis of modular endoprosthesis and allograft-prosthetic composite reconstruction results after bone tumor resection

Oleg Vyrva, Yanina Golovina, Roman Malyk, Оlga Golovina


Introduction: in order to replace large post-resection defects of long bones, modular endoprostheses (ME), segmental bone allografts and allograft-prosthetic composite (APC) are predominantly used (a technique combining both methods). Objective: to conduct a comparative analysis of studies/papers (according to the literature data) as for using of modular endoprosthetics and allograft-prosthetic composite after bone tumor resection. Methods: we have done comparative statistical analysis of the literature data (44 studies) and a meta-analysis of the treatment results of patients with long bone malignant tumors using ME and APC (4 studies). Statistical processing (meta-analysis) of the data was carried out with certified Cochrane Collaboration software Review manager 5.3. Results: a total of 2840 patients were analyzed (comparative analysis). For the statistical analysis, specific criteria were selected: infectious complications, nonunion of allograft and recipient bone, bone fractures, structural fractures (mechanical complications), allograft resorption, functional result according to the MSTS. We have selected 4 comparative studies for functional results (by meta-analysis method) assessment. There are results of 2 techniques for femoral defect replacement: ME and APC. These studies were retrospective, included 157 patients. Conclusions: better functional results and less infection complications were observed at APC technique for proximal humerus replacement compare to ME. The results of both methods of comparative analysis for the proximal femur revealed the absence of hip head dislocation and a significant reduction an infection rates with allograft-prosthetic composite. As a result of the meta-analysis, it has been showed that APC has a statistically significant advantages of these functional results (MSTS score) over the tumor ME for proximal femur tumor surgery procedures.


модульне ендопротезування; алокомпозитне ендопротезування; післярезекційні дефекти кісток і суглобів; пухлини кісток


Vyrva, O., Golovina, O., & Malyk, R. (2017). Bone allograft in the surgical treatment of patients with tumors of long bones. Сlinical oncology, 2(26), 12-17. [in Russian]

Vyrva, O., Golovina, O., & Malyk, R. (2015). Allograft-prosthesis composite for surgical treatment in patients with malignant tumors of the long bones (review). Orthopaedics, traumatology and prosthetics, (2), 120. doi: 10.15674/0030-598720152120-125. [in Russian]

Henderson, E. R., O’Connor, M. I., Ruggieri, P., Windhager, R., Funovics, P. T., Gibbons, C. L., ... & Letson, G. D. (2014). Classification of failure of limb salvage after reconstructive surgery for bone tumours. The Bone & Joint Journal, 96-B(11), 1436-1440. doi: 10.1302/0301-620x.96b11.34747

Tikhova, G. P. (2013). Graphical portrait of meta-analysis results. Regional anesthesia and acute pain treatment, 7(2), 48-52. [in Russian]

Kassab, M., Dumaine, V., Babinet, A., Ouaknine, M., Tomeno, B., & Anract, P. (2005). Les reconstructions apres resection tumorale de l’extrémité supérieure de l’humérus. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil Moteur, 91(1), 15-23. doi: 10.1016/s0035-1040(05)84271-0

Schmolders, J., Koob, S., Schepers, P., Kehrer, M., Frey, S. P., Wirtz, D. C., … & Strauss, A. C. (2016). Silver-coated endoprosthetic replacement of the proximal humerus in case of tumour—is there an increased risk of periprosthetic infection by using a trevira tube? International Orthopaedics, 41(2), 423-428. doi: org/10.1007/s00264-016-3329-6

Dubina, A., Shiu, B., Gilotra, M., Hasan, S. A., Lerman, D., & Ng, V. Y. (2017). What is the optimal reconstruction option after the resection of proximal humeral tumors? A systematic review. The Open Orthopaedics Journal, 11(1), 203-211. doi: 10.2174/1874325001711010203

Marulanda, G. A., Henderson, E., Cheong, D., & Letson, G. D. (2010). Proximal and total humerus reconstruction with the use of an Aortograft mesh. Clinical Orthopaedics and Related Research, 468(11), 2896-2903. doi: 10.1007/s11999-010-1418-1

Lazerges, C., Dagneaux, L., Degeorge, B., Tardy, N., Coulet, B., & Chammas, M. (2017). Composite reverse shoulder arthroplasty can provide good function and quality of life in cases of malignant tumour of the proximal humerus. International Orthopaedics, 41(12), 2619-2625. doi: 10.1007/s00264-017-3538-7

Ruggieri, P., Mavrogenis, A. F., Guerra, G., & Mercuri, M. (2011). Preliminary results after reconstruction of bony defects of the proximal humerus with an allograft-resurfacing composite. The Journal of Bone and Joint Surgery. British volume, 93 (8), 1098-1103. doi: 10.1302/0301-620x.93b8.26011

Abdeen, A., Hoang, B. H., Athanasian, E. A., Morris, C. D., Boland, P. J., & Healey, J. H. (2009). Allograft-prosthesis composite reconstruction of the proximal part of the humerus. The Journal of Bone and Joint Surgery. American Volume, 91(10), 2406-2415. doi: 10.2106/jbjs.h.00815

Black, A. W., Szabo, R. M., & Titelman, R. M. (2007). Treatment of malignant tumors of the proximal humerus with allograft-prosthesis composite reconstruction. Journal of Shoulder and Elbow Surgery, 16(5), 525-533. doi: 10.1016/j.jse.2006.12.006

Chacon, A., Virani, N., Shannon, R., Levy, J. C., Pupello, D., & Frankle, M. (2009). Revision arthroplasty with use of a reverse shoulder prosthesis-allograft composite. The Journal of Bone and Joint Surgery. American Volume, 91(1), 119-127. doi: org/10.2106/jbjs.h.00094

Potter, B. K., Adams, S. C., Pitcher, J. D., Malinin, T. I., & Temple, H. T. (2008). Proximal humerus reconstructions for tumors. Clinical Orthopaedics and Related Research, 467(4), 1035-1041. doi: 10.1007/s11999-008-0531-x

Teunis, T., Nota, S. P., Hornicek, F. J., Schwab, J. H., & Lozano-Calderón, S. A. (2014). Outcome after reconstruction of the proximal humerus for tumor resection: A systematic review. Clinical Orthopaedics and Related Research, 472(7), 2245-2253. doi: 10.1007/s11999-014-3474-4

Wang, Z., Guo, Z., Li, J., Li, X., & Sang, H. (2010). Functional outcomes and complications of reconstruction of the proximal humerus after intra-articular tumor resection. Orthopaedic Surgery, 2(1), 19-26. doi: 10.1111/j.1757-7861.2009.00058.x

Ueda, T., Kakunaga, S., Takenaka, S., Araki, N., & Yoshikawa, H. (2013). Constrained total hip megaprosthesis for primary periacetabular tumors. Clinical Orthopaedics and Related Research, 471(3), 741-749. doi: 10.1007/s11999-012-2625-8

Hardes, J., Von Eiff, C., Streitbuerger, A., Balke, M., Budny, T., Henrichs, M. P., Hauschild, G., & Ahrens, H. (2010). Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. Journal of Surgical Oncology, 101(5), 389-395. doi: 10.1002/jso.21498

Parvizi, J., Tarity, T. D., Slenker, N., Wade, F., Trappler, R., Hozack, W. J., & Sim, F. H. (2007). Proximal femoral replacement in patients with non-neoplastic conditions. The Journal of Bone and Joint Surgery. American Volume, 89(5), 1036-1043. doi: 10.2106/00004623-200705000-00016

Gosal, G., Boparai, A., & Makkar, G. (2015). Long-term outcome of endoprosthetic replacement for proximal femur giant cell tumor. Nigerian Journal of Surgery, 21(2), 143. doi: 10.4103/1117-6806.162583

Ruggieri, P., Bosco, G., Pala, E., Errani, C., & Mercuri, M. (2010). Local recurrence, survival and function after total femur resection and Megaprosthetic reconstruction for bone sarcomas. Clinical Orthopaedics and Related Research, 468(11), 2860-2866. doi: 10.1007/s11999-010-1476-4

Bruns, J., Delling, G., Gruber, H., Lohmann, C. H., & Habermann, C. R. (2007). Cementless fixation of megaprostheses using a conical fluted stem in the treatment of bone tumours. The Journal of Bone and Joint Surgery. British volume, 89 (8), 1084-1087. doi: 10.1302/0301-620x.89b8.19236

Bertani, A., Helix, M., Louis, M., Rochwerger, A., & Curvale, G. (2009). Total hip arthroplasty in severe segmental femoral bone loss situations: Use of a reconstruction modular stem design (JVC IX™). Orthopaedics & Traumatology: Surgery & Research, 95(7), 491-497. doi: 10.1016/j.otsr.2009.07.011

Calabró, T., Van Rooyen, R., Piraino, I., Pala, E., Trovarelli, G., Panagopoulos, G. N., … & Ruggieri, P. (2016). Reconstruction of the proximal femur with a modular resection prosthesis. European Journal of Orthopaedic Surgery & Traumatology, 26(4), 415-421. doi: 10.1007/s00590-016-1764-0

Tan, P. K., & Tan, M. H. (2009). Functional outcome study of mega-endoprosthetic reconstruction in limbs with bone tumour surgery. Annals of the Academy of Medicine, 38, 192-196

McGoveran, B. M., Davis, A. M., Gross, A. E., & Bell, R. S. (1999). Evaluation of the allograftprosthesis composite technique for proximal femoral reconstruction after resection of a primary bone tumour. Canadian Journal of Surgery, 42(1), 37–45

Donati, D., Giacomini, S., Gozzi, E., & Mercuri, M. (2002). Proximal femur reconstruction by an allograft prosthesis composite. Clinical Orthopaedics and Related Research, 394, 192-200. doi: 10.1097/00003086-200201000-00023

Langlais, F., Lambotte, J. C., Collin, P., & Thomazeau, H. (2003). Long-term results of allograft composite total hip prostheses for tumors. Clinical Orthopaedics and Related Research, 414, 197-211. doi: 10.1097/01.blo.0000079270.91782.23

Tang, F., Min, L., Duan, H., Zhou, Y., Zhang, W., Shi, R., & Tu, C. (2015). Cemented allograft-prosthesis composite reconstruction for the proximal femur tumor. OncoTargets and Therapy, 2261. doi: 10.2147/ott.s85788

Ye, Z. M., Li, W. X., Yang, D. S. & Tao, H. M. (2005). Repairing bone and joint defect after tumorexcision with allograft/prosthetic composite arthroplasty: zhejiang da xuebao. Yi xue ban J Zhejiang Univ Med Sci, 34(5), 400–404

Subhadrabandhu, S., Takeuchi, A., Yamamoto, N., Shirai, T., Nishida, H., Hayashi, K., … & Tsuchiya, H. (2015). Frozen autograft-prosthesis composite reconstruction in malignant bone tumors. Orthopedics, 38(10), e911-e918. doi: 10.3928/01477447-20151002-59

Titus, V., & Clayer, M. (2008). Protecting a patellar ligament reconstruction after proximal tibial resection: A simplified approach. Clinical Orthopaedics and Related Research, 466(7), 1749-1754. doi: 10.1007/s11999-008-0239-y

Calori, G. M., Mazza, E. L., Vaienti, L., Mazzola, S., Colombo, A., Gala, L., & Colombo, M. (2016). Reconstruction of patellar tendon following implantation of proximal tibia megaprosthesis for the treatment of post-traumatic septic bone defects. Injury, 47, S77-S82. doi: 10.1016/s0020-1383(16)30843-9

Chim, H., Tan, B., Tan, M. H., Tan, K., & Song, C. (2007). Optimizing the use of local muscle flaps for knee Megaprosthesis coverage. Annals of Plastic Surgery, 59(4), 398-403. doi: 10.1097/

Hu, C., Chen, S., Chen, C., Chang, Y., Ueng, S. W., & Shih, H. (2017). Superior survivorship of Cementless vs cemented Diaphyseal fixed modular rotating-hinged knee Megaprosthesis at 7 years' follow-up. The Journal of Arthroplasty, 32(6), 1940-1945. doi: 10.1016/j.arth.2016.12.026

Ilyas, I., Kurar, A., Moreau, P., & Younge, D. (2001). Modular megaprosthesis for distal femoral tumors. International Orthopaedics, 25(6), 375-377. doi: 10.1007/s002640100290

Pala, E., Trovarelli, G., Calabrò, T., Angelini, A., Abati, C. N., & Ruggieri, P. (2014). Survival of modern knee tumor Megaprostheses: Failures, functional results, and a comparative statistical analysis. Clinical Orthopaedics and Related Research, 473(3), 891-899. doi: 10.1007/s11999-014-3699-2

Ahlmann, E. R., & Menendez, L. R. (2006). Intercalary endoprosthetic reconstruction for diaphyseal bone tumours. The Journal of Bone and Joint Surgery. British volume, 88(11), 1487-1491. doi: 10.1302/0301-620x.88b11.18038

Staals, E. L., Colangeli, M., Ali, N., Casanova, J. M., Donati, D. M., & Manfrini, M. (2015). Are complications associated with the Repiphysis® expandable distal femoral prosthesis acceptable for its continued use? Clinical Orthopaedics and Related Research, 473(9), 3003-3013. doi: 10.1007/s11999-015-4355-1

Zimel, M. N., Farfalli, G. L., Zindman, A. M., Riedel, E. R., Morris, C. D., Boland, P. J., & Healey, J. H. (2015). Revision distal femoral arthroplasty with the compress® prosthesis has a low rate of mechanical failure at 10 years. Clinical Orthopaedics and Related Research, 474(2), 528-536. doi: 10.1007/s11999-015-4552-y

Cho, W. H., Song, W. S., Jeon, D., Kong, C., Kim, J. I., & Lee, S. (2011). Cause of infection in proximal tibial endoprosthetic reconstructions. Archives of Orthopaedic and Trauma Surgery, 132(2), 163-169. doi: 10.1007/s00402-011-1405-3

Moon, B. S., Gilbert, N. F., Cannon, C. P., Lin, P. P., & Lewis, V. O. (2013). Distal femur allograft prosthetic composite reconstruction for short proximal femur segments following tumor resection. Advances in Orthopedics, 2013, 1-5. doi: 10.1155/2013/397456

Farfalli, G. L., Aponte-Tinao, L. A., Ayerza, M. A., Muscolo, D. L., Boland, P. J., Morris, C. D., … & Healey, J. H. (2013). Comparison between constrained and Semiconstrained knee allograft-prosthesis composite reconstructions. Sarcoma, 2013, 1-8. doi: 10.1155/2013/489652

Wilkins, R. M., & Kelly, C. M. (2002). Revision of the failed distal femoral replacement to allograft prosthetic composite. Clinical Orthopaedics and Related Research, 397, 114-118. doi: 10.1097/00003086-200204000-00016

Donati, D., Colangeli, M., Colangeli, S., Di Bella, C., & Mercuri, M. (2008). Allograft-prosthetic composite in the proximal tibia after bone tumor resection. Clinical Orthopaedics and Related Research, 466(2), 459-465. doi: 10.1007/s11999-007-0055-9

Gilbert, N. F., Yasko, A. W., Oates, S. D., Lewis, V. O., Cannon, C. P., & Lin, P. P. (2009). Allograft-prosthetic composite reconstruction of the proximal part of the tibia. The Journal of Bone and Joint Surgery. American Volume, 91(7), 1646-1656. doi: 10.2106/jbjs.g.01542

Jeon, D., Kim, M. S., Cho, W. H., Song, W. S., & Lee, S. (2007). Pasteurized autograft-prosthesis composite for reconstruction of proximal tibia in 13 sarcoma patients. Journal of Surgical Oncology, 96(7), 590-597. doi: 10.1002/jso.20840

Benedetti, M. G., Bonatti, E., Malfitano, C., & Donati, D. (2013). Comparison of allograft-prosthetic composite reconstruction and modular prosthetic replacement in proximal femur bone tumors. Acta Orthopaedica, 84(2), 218-223. doi: 10.3109/17453674.2013.773119

Anract, P., Coste, J., Vastel, L., Jeanrot, C., Mascard, E., & Tomeno, B. (2000). Proximal femoral reconstruction with megaprosthesis versus allograft prosthesis composite. A comparative study of functional results: complications and longevity in 41 cases. Revue de Chirurgie Orthopеdique et Réparatrice de l Appareil Moteu, 86(3), 278–288

Farid, Y., Lin, P. P., Lewis, V. O., & Yasko, A. W. (2006). Endoprosthetic and allograft-prosthetic composite reconstruction of the proximal femur for bone neoplasms. Clinical Orthopaedics and Related Research, 442, 223-229. doi: 10.1097/01.blo.0000181491.39048.fe

Zehr, R. J., Enneking, W. F., & Scarborough, M. T. (1996). Allograft-prosthesis composite versus Megaprosthesis in proximal femoral reconstruction. Clinical Orthopaedics and Related Research, 322, 174-223. doi: 10.1097/00003086-199601000-00026

Gautam, D., & Malhotra, R. (2018). Megaprosthesis versus allograft prosthesis composite for massive skeletal defects. Journal of Clinical Orthopaedics and Trauma, 9(1), 63-80. doi: 10.1016/j.jcot.2017.09.010

Copyright (c) 2020 Oleg Vyrva, Yanina Golovina, Roman Malyk, Оlga Golovina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.