Cell-molecular interactions at the border of articular cartilage and subchondral bone
DOI:
https://doi.org/10.15674/0030-59872019450-58Keywords:
osteoarthrosis, osteochondral connection, RANKL, OPGAbstract
It has been proven that subchondral bone and articular cartilage are structurally and metabolically related. The molecular triad OPG/RANK/RANKL controls the differentiation and biological function of osteoclasts. It was established that the level of expression of these molecules by chondrocytes depends on the stage of pathological changes. Objective: to study the expression of RANKL and OPG in the cells of the articular cartilage and subchondral bone obtained after hip replacement of 56 patients with hip joint arthritis and in an animal experiment. Methods: сhanges in articular cartilage and bone tissue were induced in animals by ovariectomy. Clinical and experimental material was studied by histological methods using scanning microscopy, immunohistochemical evaluation of RANKL and OPG. Results: OPG and RANKL expression in early arthritic disorders was detected in rats, mainly in the superficial area of articular cartilage. In clinical material, RANKL expression was noted only in individual chondrocytes of preserved articular cartilage. The color intensity was low. An increased expression of RANKL by osteocytes was found in the osteochondral junction zone. The most pronounced immunoreactivity was noted in chondrocytes, especially in isogenic groups, throughout the preserved articular cartilage. Osteocytes and single osteoblasts located on the marginal surface of bone trabeculae were expressed in OPG bone tissue. In the intertrabecular spaces, an intense reaction is fixed in the cells around the vessels. Conclusions: an increase in the RANKL/OPG ratio was noted in chondrocytes of articular cartilage already in the early stages of arthrosis. Significant changes in the subchondral bone microarchitecture with the presence of immunopositive cells indicate active remodeling processes, which are a reflection of the abnormal expression of RANKL/OPG by cells of bone and cartilage tissue under conditions of arthritis against a background of reduced bone mineral density.
References
- Korzh, M. O., Dedukh, N. V., & Yakovenchuk, N. N. (2013). Osteoporosis and osteoarthrosis: pathogenetically interrelated diseases? (review of literature). Orthopedics, Traumatology and Prosthetics, 4, 102–110. doi: 10.15674/0030-598720134102-110 (in Russian)
- Findlay, D. M., & Atkins, G. J. (2014). Osteoblast-Chondrocyte Interactions in Osteoarthritis. Current Osteoporosis Reports, 12 (1), 127–134. doi:10.1007/s11914-014-0192-5
- Yuan, X., Meng, H., Wang, Y., Peng, J., Guo, Q., Wang, A., & Lu, S. (2014). Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis and Cartilage, 22 (8), 1077–1089. doi:10.1016/j.joca.2014.05.023
- Deveza, L. A., Bierma-Zeinstra, S. M., Van Spil, W. E., Oo, W. M., Saragiotto, B. T., Neogi, T., … Hunter, D. J. (2018). Efficacy of bisphosphonates in specific knee osteoarthritis subpopulations: protocol for an OA Trial Bank systematic review and individual patient data meta-analysis. BMJ Open, 8 (12), e023889. doi: 10.1136/bmjopen-2018-023889
- Tat, S. K., Pelletier, J., Lajeunesse, D., Fahmi, H., Duval, N., & Martel-Pelletier, J. (2008). Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts: Influence of osteotropic factors. Bone, 43 (2), 284–291. doi: 10.1016/j.bone.2008.04.006
- Burr, D. B., & Gallant, M. A. (2012). Bone remodelling in osteoarthritis. Nature Reviews Rheumatology, 8 (11), 665–673. doi:10.1038/nrrheum.2012.130
- Yu, D., Xu, J., Liu, F., Wang, X., Mao, Y., &Zhu Z. (2016). Subchondral bone changes and the impacts on joint pain and articular cartilage degeneration in osteoarthritis. Clinical and Experimental Rheumatology, 34 (5), 929–934. doi: 10.1038_s41598-01.
- Xiao, Z., Su, G., Hou, Y., Chen, S., & Lin, D. (2018). Cartilage degradation in osteoarthritis: A process of osteochondral remodeling resembles the endochondral ossification in growth plate? Medical Hypotheses, 121, 183–187. doi:10.1016/j.mehy.2018.08.023
- Arias, C. F., Herrero, M. A., Echeverri, L. F., Oleaga, G. E., & López, J. M. (2018). Bone remodeling: A tissue-level process emerging from cell-level molecular algorithms. PLOS ONE, 13 (9), e0204171. doi:10.1371/journal.pone.0204171
- Eriksen E. F. (2010). Cellular mechanisms of bone remodeling. Reviews i n e ndocrine & metabolic d isorders, 11 (4), 219–227. doi: 10.1007/ s11154-010-9153-1.
- Sharma, A., Jagga, S., Lee, S., & Nam, J. (2013). Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. International Journal of Molecular Sciences, 14(10), 19805-19830. doi:10.3390/ijms141019805
- Kenkre J. S., & Bassett, J. (2018). The bone remodelling cycle. Annals of Clinical Biochemistry, 55 (3), 308–327. doi: 10.1177/0004563218759371.
- Boyce, B. F., & Xing, L. (2008). Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of Biochemistry and Biophysics, 473 (2), 139–146. doi: 10.1016/j.abb.2008.03.018
- Weitzmann, M. N. (2013). The Role of Inflammatory Cytokines, the RANKL/OPG Axis, and the Immunoskeletal Interface in Physiological Bone Turnover and Osteoporosis. Scientifica, 2013, 1–29. doi: 10.1155/2013/125705
- Kohli, S., & Kohli, V. (2011). Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian Journal of Endocrinology and Metabolism, 15 (3), 175. doi:10.4103/2230-8210.83401
- Komuro, H., Olee, T., Kuhn, K., Quach, J., Brinson, D. C., Shikhman, A., … Lotz, M. (2001). The osteoprotegerin/receptor activator of nuclear factor kappaB/receptor activator of nuclear factor kappaB ligand system in cartilage. Arthritis & Rheumatism, 44 (12), 2768–2776. doi: 10.1002/1529-0131(200112)44:12<2768::aid-art464>3.0.co;2-i
- Upton, A. R., Holding, C. A., Dharmapatni, A. A., & Haynes, D. R. (2011). The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatology International, 32 (2), 535–540. doi: 10.1007/s00296-010-1733-6
- Maria J. Martínez-Calatrava, Ivan Prieto-Potín, Jorge A. Roman-Blas, Lidia Tardio, Raquel Largo & Gabriel Herrero-Beaumont (2012). RANKL synthesized by articular chondrocytes contributes to juxta-articular bone loss in chronic arthritis. Arthritis Research & Therapy, 14 (3), R149. doi: 10.1186/ar3884.
- Wang, B., Jin, H., Shu, B., Mira, R. R., & Chen, D. (2015). Chondrocytes-Specific Expression of Osteoprotegerin Modulates Osteoclast Formation in Metaphyseal Bone. Scientific Reports, 5(1). doi:10.1038/srep13667
- Zeng, J., Wang, Z., Ma, L., Meng, H., Yu, H., Cheng, W., … Guo, A. (2016). Increased receptor activator of nuclear factor κβ ligand/osteoprotegerin ratio exacerbates cartilage destruction in osteoarthritis in vitro. Experimental and Therapeutic Medicine, 12 (4), 2778–2782. doi:10.3892/etm.2016.3638
- Kovács, B., Vajda, E., & Nagy, E. E. (2019). Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. International Journal of Molecular Sciences, 20(18), E4653. doi: 10.3390/ijms20184653
- Povoroznуuk, V. V, Dedukh, N. V, Grуgorуeva, V. V., & Gopkalova, I. V. (2012). Experimental osteoporosis. Kiev. [in Russian]
- European Convention for the Protection of Vertebrate Animals Used for Research and Other Scientific Purposes. Strasbourg, March 18, 1986: official translation [Electronic resource]. Verkhovna Rada of Ukraine. Retrieved from http: zakon. rada.gov.ua/cgi-bin/laws/main.cgi?nreg=994_137. (in Ukrainian)
- On the Protection of Animals from Cruelty: Law of Ukraine № 3447-IV of 21.02.2006 [Electronic resource]. Verkhovna Rada of Ukraine. Retrieved from http: zakon. rada.gov.ua/cgi-bin/laws/main.cgi?nreg=994_137. (in Ukrainian)
- Kellgre, J. H., & Lawrence, J. S. (1957). Radiological. Assessment of Osteo-Arthrosis Annals of the Rheumatic Diseases, 16, 494–502.
- Sarkisov, D. S., & Perov ,Yu. L. (1996). Microscopic technology. Moscow: Medicine. [in Russian]
- Allred, D. C., Harvey, J. M., Berardo, M. & Clark, G. M. (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern Pathology, 11 (2), 155–168.
- Gerwin, N., Bendele, A., Glasson, S., & Carlson, C. (2010). The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat. Osteoarthritis and Cartilage, 18, S24–S34. doi: 10.1016/j.joca.2010.05.030
- Chand, P., Anubha, G., Singla, V., & Rani, N. (2018). Evaluation of immunohistochemical profile of breast cancer for prognostics and therapeutic use. Nigerian Journal of Surgery, 24 (2), 100. doi: 10.4103/njs.njs_2_18
- Lv, Y., Xia, J., Chen, J., Zhao, H., Yan, H., Yang, H., & Chen, X. (2014). Effects of pamidronate disodium on the loss of osteoarthritic subchondral bone and the expression of cartilaginous and subchondral osteoprotegerin and RANKL in rabbits. BMC Musculoskeletal Disorders, 15 (370). doi: 10.1186/1471-2474-15-370
- Li, G., Yin, J., Gao, J., Cheng, T. S., Pavlos, N. J., Zhang, C., & Zheng, M. H. (2013). Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Research & Therapy, 15 (6), 223. doi: 10.1186/ar4405
- Kauppinen, S., Karhula, S., Thevenot, J., Ylitalo, T., Rieppo, L., Kestilä, I., & Nieminen, H. (2019). 3D morphometric analysis of calcified cartilage properties using micro-computed tomography. Osteoarthritis and Cartilage, 27 (1), 172–180. doi:10.1016/j.joca.2018.09.009
- Povoroznyuk, V. V., & Grigoryeva, N. V. (2012). Osteoarthrosis in postmenopausal women: risk factors and connection with bone tissue. Endocrinology, 6, 8, 64–71. [in Russian]
- Oláh, T., & Madry, H. (2018). The Osteochondral Unit: The Importance of the Underlying Subchondral Bone. In J. Farr, A. Gomoll (eds.). Springer, Cham. doi:10.1007/978-3-319-77152-6_2
- Upton, A. R., Holding, C. A., Dharmapatni, A. A., & Haynes, D. R. (2011). The expression of RANKL and OPG in the various grades of osteoarthritic cartilage. Rheumatology International, 32 (2), 535–540. doi: 10.1007/s00296-010-1733-6
- Maruotti, N., Corrado, A., & Cantatore, F. P. (2017). Osteoblast role in osteoarthritis pathogenesis. Journal of Cellular Physiology, 232 (11), 2957–2963. doi: 10.1002/jcp.25969
- Bolon, B., Grisanti, M., Villasenor, K., Morony, S., Feige, U., & Simonet, W. S. (2015). Generalized degenerative joint disease in osteoprotegerin (Opg) null mutant mice. Veterinary Pathology, 52 (5), 873–882. doi: 10.1177/0300985815586221
- Tat, S. K., Pelletier, J., Velasco, C. R., Padrines, M., & Martel-Pelletier, J. (2009). New Perspective in Osteoarthritis: The OPG and RANKL System as a Potential Therapeutic Target? The Keio Journal of Medicine, 58 (1), 29–40. doi: 10.2302/kjm.58.29
- J. Menetrey, F. Unno-Veith, H. Madry, I. van Breuseghem (2010). Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surgery, Sports Traumatology, Arthroscopy, 18 (4), 463–471. doi: 10.1007/s00167-010-1053-0
- Madry, H., Van Dijk, C. N., & Mueller-Gerbl, M. (2010). The basic science of the subchondral bone. Knee Surgery, Sports Traumatology, Arthroscopy, 18 (4), 419–433. doi:10.1007/s00167-010-1054-z
- Yakovenchuk, N. M., & Dyedukh, N. V. (2017). Morphology of joint cartilage and subhondral bone plate after modeling osteoporosis. Bulletin of problems of biology and medicin, 4, 3, 324–327. DOI: 10.29254/2077-4214-2017-4-3-141-324-327 [in Ukrainian]
- Stewart, H. L., & Kawcak, C. E. (2018). The Importance of Subchondral Bone in the Pathophysiology of Osteoarthritis. Frontiers in Veterinary Science, 5. doi:10.3389/fvets.2018.00178
- Fell, N., Lawless, B., Cox, S., Cooke, M., Eisenstein, N., Shepherd, D., & Espino, D. (2019). The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores. Osteoarthritis and Cartilage, 27 (3), 535–543. doi: 10.1016/j.joca.2018.12.006
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2020 Nataliya Yakovenchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the right of authorship of their manuscript and pass the journal the right of the first publication of this article, which automatically become available from the date of publication under the terms of Creative Commons Attribution License, which allows others to freely distribute the published manuscript with mandatory linking to authors of the original research and the first publication of this one in this journal.
Authors have the right to enter into a separate supplemental agreement on the additional non-exclusive distribution of manuscript in the form in which it was published by the journal (i.e. to put work in electronic storage of an institution or publish as a part of the book) while maintaining the reference to the first publication of the manuscript in this journal.
The editorial policy of the journal allows authors and encourages manuscript accommodation online (i.e. in storage of an institution or on the personal websites) as before submission of the manuscript to the editorial office, and during its editorial processing because it contributes to productive scientific discussion and positively affects the efficiency and dynamics of the published manuscript citation (see The Effect of Open Access).