Antibacterial properties of a modified magnesium alloy with clinical strains of non-fermentative gram-negative microorganisms in vitro

Vadim Chornіy


The objective is to determine the sensitivity of A. baumannii and P. aeruginosa (etiological agents of implant-associated infections) to the ML-10 magnesium alloy biodegradation products to justify the possibility of its application in traumatological practice as implants with antibacterial activity.

Methods: ML10 magnesium alloy extract was made based on Mueller–Hinton broth (pH 7.4). Its bacteriostatic activity was assessed by the presence/absence of visual growth of A. baumannii and P. aeruginosa in culture tubes, and the bactericidal activity — by the presence/absence of growth of microorganism colonies on agar plates after plating from the tubes after 24, 28, and 72 h of incubation.

Results: the extract of alloy ML-10 magnesium alloy has a high bacteriostatic and bactericidal activity in relation to the clinical strains of A. baumannii and P. aeruginosa. No growth of microorganisms was visually detected in test tubes with extract, which indicated a significant bacteriostatic activity of the alloy biodegradation products. In the study of bactericidal activity, the maximum growth of bacteria on agar was observed after the first seeding from tubes (24 hours of incubation of the extract) into which microorganisms were added the day before at a concentration of 109 , 108 , 107 CFU/ml. The number of colonies grown on agar after the second seeding (48 hours of incubation of the extract) was significantly reduced, and after the third seeding (72 hours), the growth of microorganisms was absent in most of experiments. In the case of the addition of microorganisms at a concentration of 106 , 105 , 104 CFU/ml, there was no colony growth on a solid medium after seeding from these tubes.

Conclusions: ML-10 magnesium alloy biodegradation products exhibit high bactericidal activity against clinical strains of A. baumannii and P. aeruginosa, which are the causative agents of implant-associated infections.


magnesium alloy; implant; antibacterial properties; Acinetobacter baumannii; Pseudomonas aeruginosa


Thakore, R. V., Greenberg, S. E., Shi, H., Foxx, A. M., Francois, E. L., Prablek, M. A., & Sethi, M. K. (2015). Surgical site infection in orthopedic trauma: A case–control study evaluating risk factors and cost. Journal of Clinical Orthopaedics and Trauma, 6 (4), 220–226. doi:10.1016/j.jcot.2015.04.004

Scheffer, D., Hofmann, S., Pietsch, M., & Wenisch, C. (2008). Infektionen in der Orthopädie und Traumatologie. Der Orthopäde, 37(7), 709-720. doi:10.1007/s00132-008-1301-x (in German)

Busscher, H. J., Van der Mei, H. C., Subbiahdoss, G., Jutte, P. C., Van den Dungen, J. J., Zaat, S. A., & Grainger, D. W. (2012). Biomaterial-associated infection: locating the finish line in the race for the surface. Science Translational Medicine, 4 (153), 153rv10–153rv10. doi:10.1126/scitranslmed.3004528

Al-Mulhim, F. A., Baragbah, M. A., Sadat-Ali, M., Alomran, A. S., & Azam, M. Q. (2014). Prevalence of surgical site infection in orthopedic surgery: a 5-year analysis. International Surgery, 99 (3), 264–268. doi:10.9738/intsurg-d-13-00251.1

Martínez-Pastor, J. C., Munoz-Mahamud, E., Vilchez, F., Garcia-Ramiro, S., Bori, G., & Sierra, J, et al. (2009) Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrobial agents and Chemotherapy, 53 (11), 4772–4777. doi: 10.1128/AAC.00188-09.

Brady, R. A., Calhoun, J. H., Leid, J. G., & Shirtliff, M. E. (n.d.). Infections of orthopaedic implants and devices. Springer Series on Biofilms, 15–55. doi:10.1007/978-3-540-68119-9_2

Stewart, P. S., & William Costerton, J. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358 (9276), 135–138. doi:10.1016/s0140-6736(01)05321-1

He, G., Wu, Y., Zhang, Y., Zhu, Y., Liu, Y., Li, N., & Mao, C. (2015). Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties. Journal of Materials Chemistry B, 3 (32), 6676–6689. doi:10.1039/c5tb01319d

Robinson, D. A., Griffith, R. W., Shechtman, D., Evans, R. B., & Conzemius, M. G. (2010). In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomaterialia, 6 (5), 1869–1877. doi:10.1016/j.actbio.2009.10.007

Copyright (c) 2019 Vadim Chornіy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.