Diamond-like carbon coatings in endoprosthetics (literature review)

Authors

DOI:

https://doi.org/10.15674/0030-598720192102-111

Keywords:

diamond-like carbon coatings, endoprostheses, biocompatibility, tribological testing, clinical application, orthopedics and traumatology

Abstract

Based on literature data, the results of experimental studies and clinical application of diamond-like carbon (DLC) films as coatings of the endoprosthesis metal components are estimated. Most implants used in orthopedics and traumatology are made of various metals and their alloys. Being a long time in the human body, they exhibit certain cytotoxicity as a result of corrosion and migration of particles or metal ions. DLC coatings are considered as a promising material for use in orthopedic implants due to the unique combination of properties such as biocompatibility, hardness, chemical inertness, high wear resistance, corrosion resistance and electrical resistance, and low friction coefficient. In vitro studies has found that the surface of DLC coatings creates favorable conditions for the adhesion and growth of various cells in cultures, including fibroblasts, osteoblasts, macrophages, does not cause cytotoxicity and inflammatory reaction. The results of testing DLC films in vivo indicate their biocompatibility and the absence of inflammatory reactions in the animal’s body. The results of tribological studies concerning the influence of DLC on the wear of the friction pairs of orthopedic implants were controversial. Some studies have found that these coatings in the simulators of the hip and knee joints reduce to a minimum the wear, corrosion and release of metal ions from the metal base of implants. In this case, DLC coatings show a wide range of changes in the structure and properties of coatings, depending on the conditions of their application, which determines the ratio of atomic diamond sp3- and graphite sp2-bonds. Due to the high residual internal compressive stress, DLC exhibit a tendency to arbitrarily crack and flake, which can lead to the wear of the working surfaces of the friction pair and is a major problem for the widespread introduction of these coatings into orthopedic practice, since friction pairs working under heavy load conditions. One of the ways to solve this problem is to improve the technologies of their application on the basis and reduce the compressive stress in the synthesized coatings.

Author Biographies

Vasyl Makarov

SE «Specialized Multidisciplinary Hospital № 1 of the Ministry of Health of Ukraine», Dnipro

PhD in Orthopaedics and Traumatology

Vladimir Strel’nitskij

National Science Center «Kharkiv Institute of Physics and Technology». Ukraine

Dr. Phys.-Math. Sci.

Ninel Dedukh

SI «D. F. Chebotarev Institute of Gerontology National Academy of Medical Sciences of Ukraine», Kyiv

Dr. Biol. Sci., Prof.

Olga Nikolchenko

Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Biol. Sci.

References

  1. Sevastyanova, V. I., & Kirpichnikova, M. P. (Eds.) (2011). Biocompatible materials: Tutorial. Moscow: Medical Information Agency. (in Russian)
  2. Piconi, C., De Santis, V., & Maccauro, G. (2016). Clinical outcomes of ceramicized ball heads in total hip replacement bearings: a literature review. Journal of Applied Biomaterials & Functional Materials, 15 (1), e1–e9. doi:10.5301/jabfm.5000330
  3. Ching, H. A., Choudhury, D., Nine, M. J., & Abu Osman, N. A. (2014). Effects of surface coating on reducing friction and wear of orthopaedic implants. Science and Technology of Advanced Materials, 15 (1), 014402. doi:10.1088/1468-6996/15/1/014402
  4. Kumar, N., Arora, N., & Datta, B. (2014). Bearing surfaces in hip replacement – Evolution and likely future. Medical Journal Armed Forces India, 70 (4), 371–376. doi:10.1016/j.mjafi.2014.04.015
  5. Catledge, S., Thomas, V., & Vohra, Y. (2013). Nanostructured diamond coatings for orthopaedic applications. Diamond-Based Materials for Biomedical Applications, 5, 105–150. doi:10.1533/9780857093516.2.105
  6. Moriguchi, H., Ohara, H., & Tsujioka, M. (2016). History and applications of diamond-like carbon manufacturing processes. SEI Technical Review, 82, 52–57.
  7. Alanazi, A. S. (2018). Medical application of diamond-like carbon (DLC) coating: A review. Metabolomics, 8, 22. doi: 10.4172/2153-0769-C1-040.
  8. Rahmati, M., & Mozafari, M. (2019). Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00004
  9. Aisenberg, S., & Habot, R. (1971). Ion-Beam deposition of thin films of diamondlike carbon. Journal of Applied Physics, 42 (7), 2953.
  10. Strelnitsky, V. E., Padalka, V. G., & Vakula, S. I. (1978.) Some properties of diamond-like films obtained by condensation of a carbon plasma flow under conditions of using the high-frequency potential. ZhTF, 48 (2), 377–381. (in Russian)
  11. Nagashima, S., Moon, M-W., & Le, K-R.(2015). Diamond-like carbon coatings for joint arthroplasty. Material for Total Joint Arthroplasty: Biotribology of Potential Bearings. Inperial College Press, 5, 395–412.
  12. Vetter, J. (2014). 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surface and Coatings Technology, 257, 213–240. doi:10.1016/j.surfcoat.2014.08.017
  13. Grill, A. (2003). Diamond-like carbon coatings as biocompatible materials—an overview. Diamond and Related Materials, 12 (2), 166–170. doi:10.1016/s0925-9635(03)00018-9
  14. Hauert, R. (2003). A review of modified DLC coatings for biological applications. Diamond and Related Materials, 1 2(3-7), 583-589. doi:10.1016/s0925-9635(03)00081-5
  15. Kim, H., Ahn, S., Kim, J., Park, S. J., & Lee, K. (2005). Electrochemical behavior of diamond-like carbon films for biomedical applications. Thin Solid Films, 475 (1–2), 291-297. doi:10.1016/j.tsf.2004.07.052
  16. Bociaga, D., Sobczyk-Guzenda, A., Szymanski, W., Jedrzejczak, A., Jastrzebska, A., Olejnik, A., & Jastrzebski, K. (2017). Diamond like carbon coatings doped by Si fabricated by a multi-target DC-RF magnetron sputtering method - Mechanical properties, chemical analysis and biological evaluation. Vacuum, 143, 395–406. doi:10.1016/j.vacuum.2017.06.027
  17. Subramanian, B., Thanka Rajan S., Martin, P. J., Vaithilingam, V., Bean, P. A., Evans, M. D., & Bendavid, A. (2018). Biomineralization of osteoblasts on DLC coated surfaces for bone implants. Biointerphases, 13 (4), 041002. doi:10.1116/1.5007805
  18. Evans, A., Franks, J., & Revell, P. (1991). Diamond-like carbon applied to bioengineering materials. Surface and Coatings Technology, 47 (1–3), 662-667. doi:10.1016/0257-8972(91)90338-w
  19. Mitura, E., Mitura, S., Niedzielski, P. & [et al.] (1994). Diamond-like carbon coatings for biomedical applications. Diamond and Related Materials, 3 (4–6), 896–898.
  20. Thomas, V., Halloran, B. A., Ambalavanan, N., Catledge, S. A., & Vohra, Y. K. (2012). In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomaterialia, 8 (5), 1939-1947. doi:10.1016/j.actbio.2012.01.033
  21. Allen, M., Myer, B., & Rushton, N. (2001). In vitro and in vivo investigations into the biocompatibility of diamond‐like carbon (DLC) coatings for orthopedic applications. Journal of Biomedical Materials Research, 58 (3), 319–328. doi:10.1002/1097-4636(2001)58:3<319::aid-jbm1024>3.3.co;2-6
  22. McColl, I., Grant, D., Green, S., Wood, J., Parker, T., Parker, K., & Braithwaite, N. (1994). Low temperature plasma-assisted chemical vapour deposition of amorphous carbon films for biomedical-polymeric substrates. Diamond and Related Materials, 3 (1-2), 83–87. doi:10.1016/0925-9635(94)90035-3
  23. Yang, P., Kwok, S., Chu, P., Leng, Y., Chen, J., Wang, J., & Huang, N. (2003). Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 206, 721–725. doi:10.1016/s0168-583x(03)00871-1
  24. Hauert, R., Müller, U., Francz, G., Birchler, F., Schroeder, A., Mayer, J., & Wintermantel, E. (1997). Surface analysis and bioreactions of F and Si containing a-C:H. Thin Solid Films, 308–309, 191–194. doi:10.1016/s0040-6090(97)00422-7
  25. Dorner-Reisel, A., Schürer, C., Nischan, C., Seidel, O., & Müller, E. (2002). Diamond-like carbon: alteration of the biological acceptance due to Ca–O incorporation. Thin Solid Films, 420–421, 263–268. doi:10.1016/s0040-6090(02)00745-9
  26. Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Titanium containing amorphous hydrogenated carbon films (a-C:H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cell cultures in vitro. Biomaterials, 21 (5), 449–456. doi:10.1016/s0142-9612(99)00135-0
  27. Dowling, D., Kola, P., Donnelly, K., Kelly, T., Brumitt, K., Lloyd, L., & Weill, N. (1997). Evaluation of diamond-like carbon-coated orthopaedic implants. Diamond and Related Materials, 6 (2–4), 390–393. doi:10.1016/s0925-9635(96)00687-5
  28. Khalili, A., & Ahmad, M. (2015). A Review of Cell Adhesion Studies for Biomedical and Biological Applications. International Journal of Molecular Sciences, 16 (8), 18149–18184. doi:10.3390/ijms160818149
  29. Cui, F., & Li, D. (2000). A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surface and Coatings Technology, 131 (1–3), 481–487. doi:10.1016/s0257-8972(00)00809-4
  30. Yokota, T., Terai, T., Kobayashi, T., & Iwaki, M. (2006). Cell adhesion to nitrogen-doped DLCS fabricated by plasma-based ion implantation and deposition method. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 242 (1–2), 48–50. doi:10.1016/j.nimb.2005.08.107
  31. Love, C., Cook, R., Harvey, T., Dearnley, P., & Wood, R. (2013). Diamond like carbon coatings for potential application in biological implants — a review. Tribology International, 63, 141–150. doi:10.1016/j.triboint.2012.09.006
  32. Ishige, H., Akaike, S., Hayakawa, T., Hiratsuka, M., & Nakamura, Y. (2019). Evaluation of protein adsorption to diamond-like carbon (DLC) and fluorinedoped DLC films using the quartz crystal microbalance method. Dental Materials Journal, 38 (3), 424–429. doi:10.4012/dmj.2018-060
  33. Ali, S. S., Hardt, J. I., Quick, K. L., Sook Kim-Han, J., Erlanger, B. F., Huang, T., & Dugan, L. L. (2004). A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radical Biology and Medicine, 37 (8), 1191–1202. doi:10.1016/j.freeradbiomed.2004.07.002
  34. Dearnaley, G., & Arps, J. H. (2005). Biomedical applications of diamond-like carbon (DLC) coatings: A review. Surface and Coatings Technology, 200 (7), 2518–2524. doi:10.1016/j.surfcoat.2005.07.077
  35. Narayan, R. J. (2005). Nanostructured diamondlike carbon thin films for medical applications. Materials Science and Engineering: C, 25 (3), 405–416. doi:10.1016/j.msec.2005.01.026
  36. Sheeja, D., Tay, B., & Nung, L. (2004). Feasibility of diamond-like carbon coatings for orthopaedic applications. Diamond and Related Materials, 13 (1), 184–190. doi:10.1016/j.diamond.2003.10.053
  37. Guglielmotti, M. B., Renou, S.? & Cabrini, R. L. (1999). A histomorphometric study of tissue interface by laminar implant test in rats. The International Journal of Oral & Maxillofacial Implants, 14 (4), 565–570.
  38. Atkins, G. J., Haynes, D. R., Howie, D. W., & Findlay, D. M. (2011). Role of polyethylene particles in peri-prosthetic osteolysis: A review. World Journal of Orthopedics, 2 (10), 93–101. doi:10.5312/wjo.v2.i10.93
  39. Saikko, V., & Ahlroos, T. (1997). Phospholipids as boundary lubricants in wear tests of prosthetic joint materials. Wear, 207(1–2), 86–91. doi:10.1016/s0043-1648(96)07482-0
  40. Saikko, V., Ahlroos, T., Calonius, O., & Keränen, J. (2001). Wear simulation of total hip prostheses with polyethylene against CoCr, alumina and diamond-like carbon. Biomaterials, 22 (12), 1507–1514. doi:10.1016/s0142-9612(00)00306-9
  41. Wimmer, M., Loos, J., Nassutt, R., Heitkemper, M., & Fischer, A. (2001). The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results. Wear, 250 (1–12), 129–139. doi:10.1016/s0043-1648(01)00654-8
  42. Oñate, J., Comin, M., Braceras, I., Garcia, A., Viviente, J., Brizuela, M., … Alava, J. (2001). Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine. Surface and Coatings Technology, 142–144, 1056–1062. doi:10.1016/s0257-8972(01)01074-x
  43. Platon, F., Fournier, P., & Rouxel, S. (2001). Tribological behaviour of DLC coatings compared to different materials used in hip joint prostheses. Wear, 250 (1–12), 227–236. doi:10.1016/s0043-1648(01)00651-2
  44. Tiainen, V. (2001). Amorphous carbon as a bio-mechanical coating — mechanical properties and biological applications. Diamond and Related Materials, 10 (2), 153–160. doi:10.1016/s0925-9635(00)00462-3
  45. Sheeja, D., Tay, B., & Nung, L. (2005). Tribological characterization of surface modified UHMWPE against DLC-coated Co–Cr–Mo. Surface and Coatings Technology, 190 (2–3), 231–237. doi:10.1016/j.surfcoat.2004.02.051
  46. Sheeja, D., Tay, B., Lau, S., & Nung, L. (2001). Tribological characterisation of diamond-like carbon coatings on Co–Cr–Mo alloy for orthopaedic applications. Surface and Coatings Technology, 146–147, 410–416. doi:10.1016/s0257-8972(01)01425-6
  47. Dong, H., Shi, W., & Bell, T. (1999). Potential of improving tribological performance of UHMWPE by engineering the Ti6Al4V counterfaces. Wear, 225–229, 146-153. doi:10.1016/s0043-1648(98)00356-1
  48. Ahlroos, T., & Saikko, V. (1997). Wear of prosthetic joint materials in various lubricants. Wear, 211 (1), 113–119. doi:10.1016/s0043-1648(97)00074-4
  49. Reuter, S., Weßkamp, B., Büscher, R., Fischer, A., Barden, B., Löer, F., & Buck, V. (2006). Correlation of structural properties of commercial DLC-coatings to their tribological performance in biomedical applications. Wear, 261 (3–4), 419–425. doi:10.1016/j.wear.2005.12.009
  50. Lappalainen, R., Selenius, M., Anttila, A., Konttinen, Y. T., & Santavirta, S. S. (2003). Reduction of wear in total hip replacement prostheses by amorphous diamond coatings. Journal of Biomedical Materials Research, 66B (1), 410–413. doi:10.1002/jbm.b.10026
  51. Alakoski, E., Kiuru, M., Tiainen, V., & Anttila, A. (2003). Adhesion and quality test for tetrahedral amorphous carbon coating process. Diamond and Related Materials, 12 (12), 2115–2118. doi:10.1016/s0925-9635(03)00238-3
  52. Alakoski, E., Kiuru, M., & Tiainen, V. (2006). A simplified arc discharge set-up for high adhesion of DLC coatings. Diamond and Related Materials, 15 (1), 34–37. doi:10.1016/j.diamond.2005.06.026
  53. Jelínek, M., Kocourek, T., Vrbová, M., Konarík, D., & Remsa, J. (2008). Biocompatible layers fabricated using KrF laser. Photonics, Devices, and Systems IV. doi:10.1117/12.817980
  54. Anttila, A., Lappalainen, R., Tiainen, V., & Hakovirta, M. (1997). Superior attachment of high-quality hydrogen-free amorphous diamond films to solid materials. Advanced Materials, 9 (15), 1161–1164. doi:10.1002/adma.19970091507
  55. Sheeja, D., Tay, B., Yu, L., & Lau, S. (2002). Low stress thick diamond-like carbon films prepared by filtered arc deposition for tribological applications. Surface and Coatings Technology, 154 (2–3), 289–293. doi:10.1016/s0257-8972(02)00005-1
  56. Chhowalla, M., & Amaratunga, G. A. (2001). Strongly adhering and thick highly tetrahedral amorphous carbon (ta–C) thin films via surface modification by implantation. Journal of Materials Research, 16 (1), 5–8. doi:10.1557/jmr.2001.0002
  57. Zołyński, K., Witkowski, P., Kałuzny, A. & [et al.] (1996.) Implants with hard carbon layers for application in: Pseudoar¬throsis femoris sin. Ostitis post fracturam apertam olim factam. The Journal Chemical Vapor Deposition, 4 (3), 232–239.
  58. Taeger, G., Podleska, L., Schmidt, B., Ziegler, M., & Nast-Kolb, D. (2003). Comparison of Diamond-Like-Carbon and Alumina-Oxide articulating with Polyethylene in Total Hip Arthroplasty. Materialwissenschaft und Werkstofftechnik, 34 (12), 1094–1100. doi:10.1002/mawe.200300717
  59. Azar, F. M. (2018). Quality, value, and patient safety in orthopaedic surgery. Orthopedic Clinics of North America, 49 (4), xvii. doi: 10.1016/j. ocl.2018.07.001
  60. Kurcz, B., Lyons, J., Sayeed, Z., Anoushiravani, A. A., & Iorio, R. (2018). Osteolysis as it Pertains to Total Hip Arthroplasty. Orthopedic Clinics of North America, 49 (4), 419–435. doi:10.1016/j.ocl.2018.06.001

How to Cite

Makarov, V., Strel’nitskij, V., Dedukh, N., & Nikolchenko, O. (2019). Diamond-like carbon coatings in endoprosthetics (literature review). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 102–111. https://doi.org/10.15674/0030-598720192102-111

Issue

Section

DIGESTS AND REVIEWS