DOI: https://doi.org/10.15674/0030-598720192102-111
Open Access Open Access  Restricted Access Subscription Access

Diamond-like carbon coatings in endoprosthetics (literature review)

Vasyl Makarov, Vladimir Strel’nitskij, Ninel Dedukh, Olga Nikolchenko

Abstract


Based on literature data, the results of experimental studies and clinical application of diamond-like carbon (DLC) films as coatings of the endoprosthesis metal components are estimated. Most implants used in orthopedics and traumatology are made of various metals and their alloys. Being a long time in the human body, they exhibit certain cytotoxicity as a result of corrosion and migration of particles or metal ions. DLC coatings are considered as a promising material for use in orthopedic implants due to the unique combination of properties such as biocompatibility, hardness, chemical inertness, high wear resistance, corrosion resistance and electrical resistance, and low friction coefficient. In vitro studies has found that the surface of DLC coatings creates favorable conditions for the adhesion and growth of various cells in cultures, including fibroblasts, osteoblasts, macrophages, does not cause cytotoxicity and inflammatory reaction. The results of testing DLC films in vivo indicate their biocompatibility and the absence of inflammatory reactions in the animal’s body. The results of tribological studies concerning the influence of DLC on the wear of the friction pairs of orthopedic implants were controversial. Some studies have found that these coatings in the simulators of the hip and knee joints reduce to a minimum the wear, corrosion and release of metal ions from the metal base of implants. In this case, DLC coatings show a wide range of changes in the structure and properties of coatings, depending on the conditions of their application, which determines the ratio of atomic diamond sp3- and graphite sp2-bonds. Due to the high residual internal compressive stress, DLC exhibit a tendency to arbitrarily crack and flake, which can lead to the wear of the working surfaces of the friction pair and is a major problem for the widespread introduction of these coatings into orthopedic practice, since friction pairs working under heavy load conditions. One of the ways to solve this problem is to improve the technologies of their application on the basis and reduce the compressive stress in the synthesized coatings.


Keywords


diamond-like carbon coatings; endoprostheses; biocompatibility; tribological testing; clinical application; orthopedics and traumatology

References


Sevastyanova, V. I., & Kirpichnikova, M. P. (Eds.) (2011). Biocompatible materials: Tutorial. Moscow: Medical Information Agency. (in Russian)

Piconi, C., De Santis, V., & Maccauro, G. (2016). Clinical outcomes of ceramicized ball heads in total hip replacement bearings: a literature review. Journal of Applied Biomaterials & Functional Materials, 15 (1), e1–e9. doi:10.5301/jabfm.5000330

Ching, H. A., Choudhury, D., Nine, M. J., & Abu Osman, N. A. (2014). Effects of surface coating on reducing friction and wear of orthopaedic implants. Science and Technology of Advanced Materials, 15 (1), 014402. doi:10.1088/1468-6996/15/1/014402

Kumar, N., Arora, N., & Datta, B. (2014). Bearing surfaces in hip replacement – Evolution and likely future. Medical Journal Armed Forces India, 70 (4), 371–376. doi:10.1016/j.mjafi.2014.04.015

Catledge, S., Thomas, V., & Vohra, Y. (2013). Nanostructured diamond coatings for orthopaedic applications. Diamond-Based Materials for Biomedical Applications, 5, 105–150. doi:10.1533/9780857093516.2.105

Moriguchi, H., Ohara, H., & Tsujioka, M. (2016). History and applications of diamond-like carbon manufacturing processes. SEI Technical Review, 82, 52–57.

Alanazi, A. S. (2018). Medical application of diamond-like carbon (DLC) coating: A review. Metabolomics, 8, 22. doi: 10.4172/2153-0769-C1-040.

Rahmati, M., & Mozafari, M. (2019). Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00004

Aisenberg, S., & Habot, R. (1971). Ion-Beam deposition of thin films of diamondlike carbon. Journal of Applied Physics, 42 (7), 2953.

Strelnitsky, V. E., Padalka, V. G., & Vakula, S. I. (1978.) Some properties of diamond-like films obtained by condensation of a carbon plasma flow under conditions of using the high-frequency potential. ZhTF, 48 (2), 377–381. (in Russian)

Nagashima, S., Moon, M-W., & Le, K-R.(2015). Diamond-like carbon coatings for joint arthroplasty. Material for Total Joint Arthroplasty: Biotribology of Potential Bearings. Inperial College Press, 5, 395–412.

Vetter, J. (2014). 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surface and Coatings Technology, 257, 213–240. doi:10.1016/j.surfcoat.2014.08.017

Grill, A. (2003). Diamond-like carbon coatings as biocompatible materials—an overview. Diamond and Related Materials, 12 (2), 166–170. doi:10.1016/s0925-9635(03)00018-9

Hauert, R. (2003). A review of modified DLC coatings for biological applications. Diamond and Related Materials, 1 2(3-7), 583-589. doi:10.1016/s0925-9635(03)00081-5

Kim, H., Ahn, S., Kim, J., Park, S. J., & Lee, K. (2005). Electrochemical behavior of diamond-like carbon films for biomedical applications. Thin Solid Films, 475 (1–2), 291-297. doi:10.1016/j.tsf.2004.07.052

Bociaga, D., Sobczyk-Guzenda, A., Szymanski, W., Jedrzejczak, A., Jastrzebska, A., Olejnik, A., & Jastrzebski, K. (2017). Diamond like carbon coatings doped by Si fabricated by a multi-target DC-RF magnetron sputtering method - Mechanical properties, chemical analysis and biological evaluation. Vacuum, 143, 395–406. doi:10.1016/j.vacuum.2017.06.027

Subramanian, B., Thanka Rajan S., Martin, P. J., Vaithilingam, V., Bean, P. A., Evans, M. D., & Bendavid, A. (2018). Biomineralization of osteoblasts on DLC coated surfaces for bone implants. Biointerphases, 13 (4), 041002. doi:10.1116/1.5007805

Evans, A., Franks, J., & Revell, P. (1991). Diamond-like carbon applied to bioengineering materials. Surface and Coatings Technology, 47 (1–3), 662-667. doi:10.1016/0257-8972(91)90338-w

Mitura, E., Mitura, S., Niedzielski, P. & [et al.] (1994). Diamond-like carbon coatings for biomedical applications. Diamond and Related Materials, 3 (4–6), 896–898.

Thomas, V., Halloran, B. A., Ambalavanan, N., Catledge, S. A., & Vohra, Y. K. (2012). In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomaterialia, 8 (5), 1939-1947. doi:10.1016/j.actbio.2012.01.033

Allen, M., Myer, B., & Rushton, N. (2001). In vitro and in vivo investigations into the biocompatibility of diamond‐like carbon (DLC) coatings for orthopedic applications. Journal of Biomedical Materials Research, 58 (3), 319–328. doi:10.1002/1097-4636(2001)58:3<319::aid-jbm1024>3.3.co;2-6

McColl, I., Grant, D., Green, S., Wood, J., Parker, T., Parker, K., & Braithwaite, N. (1994). Low temperature plasma-assisted chemical vapour deposition of amorphous carbon films for biomedical-polymeric substrates. Diamond and Related Materials, 3 (1-2), 83–87. doi:10.1016/0925-9635(94)90035-3

Yang, P., Kwok, S., Chu, P., Leng, Y., Chen, J., Wang, J., & Huang, N. (2003). Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 206, 721–725. doi:10.1016/s0168-583x(03)00871-1

Hauert, R., Müller, U., Francz, G., Birchler, F., Schroeder, A., Mayer, J., & Wintermantel, E. (1997). Surface analysis and bioreactions of F and Si containing a-C:H. Thin Solid Films, 308–309, 191–194. doi:10.1016/s0040-6090(97)00422-7

Dorner-Reisel, A., Schürer, C., Nischan, C., Seidel, O., & Müller, E. (2002). Diamond-like carbon: alteration of the biological acceptance due to Ca–O incorporation. Thin Solid Films, 420–421, 263–268. doi:10.1016/s0040-6090(02)00745-9

Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Titanium containing amorphous hydrogenated carbon films (a-C:H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cell cultures in vitro. Biomaterials, 21 (5), 449–456. doi:10.1016/s0142-9612(99)00135-0

Dowling, D., Kola, P., Donnelly, K., Kelly, T., Brumitt, K., Lloyd, L., & Weill, N. (1997). Evaluation of diamond-like carbon-coated orthopaedic implants. Diamond and Related Materials, 6 (2–4), 390–393. doi:10.1016/s0925-9635(96)00687-5

Khalili, A., & Ahmad, M. (2015). A Review of Cell Adhesion Studies for Biomedical and Biological Applications. International Journal of Molecular Sciences, 16 (8), 18149–18184. doi:10.3390/ijms160818149

Cui, F., & Li, D. (2000). A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surface and Coatings Technology, 131 (1–3), 481–487. doi:10.1016/s0257-8972(00)00809-4

Yokota, T., Terai, T., Kobayashi, T., & Iwaki, M. (2006). Cell adhesion to nitrogen-doped DLCS fabricated by plasma-based ion implantation and deposition method. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 242 (1–2), 48–50. doi:10.1016/j.nimb.2005.08.107

Love, C., Cook, R., Harvey, T., Dearnley, P., & Wood, R. (2013). Diamond like carbon coatings for potential application in biological implants — a review. Tribology International, 63, 141–150. doi:10.1016/j.triboint.2012.09.006

Ishige, H., Akaike, S., Hayakawa, T., Hiratsuka, M., & Nakamura, Y. (2019). Evaluation of protein adsorption to diamond-like carbon (DLC) and fluorinedoped DLC films using the quartz crystal microbalance method. Dental Materials Journal, 38 (3), 424–429. doi:10.4012/dmj.2018-060

Ali, S. S., Hardt, J. I., Quick, K. L., Sook Kim-Han, J., Erlanger, B. F., Huang, T., & Dugan, L. L. (2004). A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radical Biology and Medicine, 37 (8), 1191–1202. doi:10.1016/j.freeradbiomed.2004.07.002

Dearnaley, G., & Arps, J. H. (2005). Biomedical applications of diamond-like carbon (DLC) coatings: A review. Surface and Coatings Technology, 200 (7), 2518–2524. doi:10.1016/j.surfcoat.2005.07.077

Narayan, R. J. (2005). Nanostructured diamondlike carbon thin films for medical applications. Materials Science and Engineering: C, 25 (3), 405–416. doi:10.1016/j.msec.2005.01.026

Sheeja, D., Tay, B., & Nung, L. (2004). Feasibility of diamond-like carbon coatings for orthopaedic applications. Diamond and Related Materials, 13 (1), 184–190. doi:10.1016/j.diamond.2003.10.053

Guglielmotti, M. B., Renou, S.? & Cabrini, R. L. (1999). A histomorphometric study of tissue interface by laminar implant test in rats. The International Journal of Oral & Maxillofacial Implants, 14 (4), 565–570.

Atkins, G. J., Haynes, D. R., Howie, D. W., & Findlay, D. M. (2011). Role of polyethylene particles in peri-prosthetic osteolysis: A review. World Journal of Orthopedics, 2 (10), 93–101. doi:10.5312/wjo.v2.i10.93

Saikko, V., & Ahlroos, T. (1997). Phospholipids as boundary lubricants in wear tests of prosthetic joint materials. Wear, 207(1–2), 86–91. doi:10.1016/s0043-1648(96)07482-0

Saikko, V., Ahlroos, T., Calonius, O., & Keränen, J. (2001). Wear simulation of total hip prostheses with polyethylene against CoCr, alumina and diamond-like carbon. Biomaterials, 22 (12), 1507–1514. doi:10.1016/s0142-9612(00)00306-9

Wimmer, M., Loos, J., Nassutt, R., Heitkemper, M., & Fischer, A. (2001). The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results. Wear, 250 (1–12), 129–139. doi:10.1016/s0043-1648(01)00654-8

Oñate, J., Comin, M., Braceras, I., Garcia, A., Viviente, J., Brizuela, M., … Alava, J. (2001). Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine. Surface and Coatings Technology, 142–144, 1056–1062. doi:10.1016/s0257-8972(01)01074-x

Platon, F., Fournier, P., & Rouxel, S. (2001). Tribological behaviour of DLC coatings compared to different materials used in hip joint prostheses. Wear, 250 (1–12), 227–236. doi:10.1016/s0043-1648(01)00651-2

Tiainen, V. (2001). Amorphous carbon as a bio-mechanical coating — mechanical properties and biological applications. Diamond and Related Materials, 10 (2), 153–160. doi:10.1016/s0925-9635(00)00462-3

Sheeja, D., Tay, B., & Nung, L. (2005). Tribological characterization of surface modified UHMWPE against DLC-coated Co–Cr–Mo. Surface and Coatings Technology, 190 (2–3), 231–237. doi:10.1016/j.surfcoat.2004.02.051

Sheeja, D., Tay, B., Lau, S., & Nung, L. (2001). Tribological characterisation of diamond-like carbon coatings on Co–Cr–Mo alloy for orthopaedic applications. Surface and Coatings Technology, 146–147, 410–416. doi:10.1016/s0257-8972(01)01425-6

Dong, H., Shi, W., & Bell, T. (1999). Potential of improving tribological performance of UHMWPE by engineering the Ti6Al4V counterfaces. Wear, 225–229, 146-153. doi:10.1016/s0043-1648(98)00356-1

Ahlroos, T., & Saikko, V. (1997). Wear of prosthetic joint materials in various lubricants. Wear, 211 (1), 113–119. doi:10.1016/s0043-1648(97)00074-4

Reuter, S., Weßkamp, B., Büscher, R., Fischer, A., Barden, B., Löer, F., & Buck, V. (2006). Correlation of structural properties of commercial DLC-coatings to their tribological performance in biomedical applications. Wear, 261 (3–4), 419–425. doi:10.1016/j.wear.2005.12.009

Lappalainen, R., Selenius, M., Anttila, A., Konttinen, Y. T., & Santavirta, S. S. (2003). Reduction of wear in total hip replacement prostheses by amorphous diamond coatings. Journal of Biomedical Materials Research, 66B (1), 410–413. doi:10.1002/jbm.b.10026

Alakoski, E., Kiuru, M., Tiainen, V., & Anttila, A. (2003). Adhesion and quality test for tetrahedral amorphous carbon coating process. Diamond and Related Materials, 12 (12), 2115–2118. doi:10.1016/s0925-9635(03)00238-3

Alakoski, E., Kiuru, M., & Tiainen, V. (2006). A simplified arc discharge set-up for high adhesion of DLC coatings. Diamond and Related Materials, 15 (1), 34–37. doi:10.1016/j.diamond.2005.06.026

Jelínek, M., Kocourek, T., Vrbová, M., Konarík, D., & Remsa, J. (2008). Biocompatible layers fabricated using KrF laser. Photonics, Devices, and Systems IV. doi:10.1117/12.817980

Anttila, A., Lappalainen, R., Tiainen, V., & Hakovirta, M. (1997). Superior attachment of high-quality hydrogen-free amorphous diamond films to solid materials. Advanced Materials, 9 (15), 1161–1164. doi:10.1002/adma.19970091507

Sheeja, D., Tay, B., Yu, L., & Lau, S. (2002). Low stress thick diamond-like carbon films prepared by filtered arc deposition for tribological applications. Surface and Coatings Technology, 154 (2–3), 289–293. doi:10.1016/s0257-8972(02)00005-1

Chhowalla, M., & Amaratunga, G. A. (2001). Strongly adhering and thick highly tetrahedral amorphous carbon (ta–C) thin films via surface modification by implantation. Journal of Materials Research, 16 (1), 5–8. doi:10.1557/jmr.2001.0002

Zołyński, K., Witkowski, P., Kałuzny, A. & [et al.] (1996.) Implants with hard carbon layers for application in: Pseudoar¬throsis femoris sin. Ostitis post fracturam apertam olim factam. The Journal Chemical Vapor Deposition, 4 (3), 232–239.

Taeger, G., Podleska, L., Schmidt, B., Ziegler, M., & Nast-Kolb, D. (2003). Comparison of Diamond-Like-Carbon and Alumina-Oxide articulating with Polyethylene in Total Hip Arthroplasty. Materialwissenschaft und Werkstofftechnik, 34 (12), 1094–1100. doi:10.1002/mawe.200300717

Azar, F. M. (2018). Quality, value, and patient safety in orthopaedic surgery. Orthopedic Clinics of North America, 49 (4), xvii. doi: 10.1016/j. ocl.2018.07.001

Kurcz, B., Lyons, J., Sayeed, Z., Anoushiravani, A. A., & Iorio, R. (2018). Osteolysis as it Pertains to Total Hip Arthroplasty. Orthopedic Clinics of North America, 49 (4), 419–435. doi:10.1016/j.ocl.2018.06.001




Copyright (c) 2019 Vasyl Makarov, Vladimir Strel’nitskij, Ninel Dedukh, Olga Nikolchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.