Computer simulation and field study of the stress-strain state of the biomechanical system «fixator-bone» at supramalleolar corrective osteotomies

Authors

DOI:

https://doi.org/10.15674/0030-59872019218-26

Keywords:

supramalleolar corrective osteotomy, ankle joint, computer simulation, full-scale bench research

Abstract

Objective: to study the stability of internal fixation at various types of the supramalleolar corrective osteotomies of the distal tibia bone. To examine the parameters of stiffness and durability of the «fixator-bone» systems at computer simulation by finite elements method; to assess the adequacy of this method by comparisons with the results of field full-scale studies.

Methods: the 3D distal tibia bone model is based on the CT of an intact tibia in the ANSYS software package. In-situ study we used 5 intact distal tibia bone species of dead people. In the models we recreated supramalleolar corrective osteotomies specified zones with fixation with various blocked plates with angular stability.

Results: systems with medial blocked «puddi-plate» and anterior lateral blocked L-shaped plates had the highest stiffness and stability. The allowable efforts for compression were 217 and 308 N, for bending — 34 and 73 N, for torsion — 18.8 and 17.9 N/m, respectively. The smallest compressive stiffness (151 N), bending (19 N) and torsion (2.46 N/m) were found at a medial blocked plate. Similar distribution of maximal static and cyclic loads was obtained in full-scale bench research.

Conclusions: the adequacy of imitation 3D-models and parameters of biological materials incorporated in them was confirmed. In the case of a medial supramalleolar corrective osteotomies with an open wedge, the medial blocked plate «puddi-plate» provided the greatest stability and rigidity of fixation. For lateral supramalleolar corrective osteotomies with closed wedge and anterior focal dome correcting osteotomies — optimally used anterior-lateral L-shaped blocked plate.

Author Biographies

Taras Omelchenko

Bogomolets National Medical University, Kyiv. Ukraine

PhD in Traumatology and Orthopaedics

Oleksandr Buryanov

Bogomolets National Medical University, Kyiv. Ukraine

MD, Prof. in Traumatology and Orthopaedics

Andriy Lyabakh

SI «Institute of Traumatology and Orthopaedics of the NAMS of Ukraine», Kyiv

MD, Prof. in Traumatology and Orthopaedics

Mykola Shidlovkiy

National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

PhD in Technical Sci.

Viktor Yeshchenko

National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

PhD in Technical Sci.

Mariana Dyman

National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

References

  1. Colin, F., Bolliger, L., Horn Lang, T., Knupp, M., & Hintermann, B. (2014). Effect of supramalleolar osteotomy and total ankle replacement on talar position in the varus osteoarthritic ankle. Foot & Ankle International, 35 (5), 445–452. doi: 10.1177/1071100713519779
  2. Schmid, T., Zurbriggen, S., Zderic, I., Gueorguiev, B., Weber, M., & Krause, F. G. (2013). Ankle joint pressure changes in a pes cavovarus model. Foot & Ankle International, 34 (9), 1190–1197. doi: 10.1177/1071100713500473
  3. Colin, F., Gaudot, F., Odri, G., & Judet, T. (2014). Supramalleolar osteotomy: Techniques, indications and outcomes in a series of 83 cases. Orthopaedics & Traumatology: Surgery & Research, 100 (4), 413–418. doi: 10.1016/j.otsr.2013.12.027
  4. Kim, Y. S., Park, E. H., Koh, Y. G., & Lee, J. W. (2014). Supramalleolar osteotomy with bone marrow stimulation for varus ankle osteoarthritis. The American Journal of Sports Medicine, 42 (7), 1558–1566. doi: 10.1177/0363546514530669
  5. Omelchenko, T. M., Buryanov, O. A., Lyabakh, A. P., Mazevich, V. B., Musienko, O. S., & Shidlovskiy, M. S. (2017). Physical and mechanical properties of the trabecular bone tissue of the ankle bones (experimental and clinical study). Bulletin of orthopedics, traumatology and prosthetics, 2, 66–72. (in Ukrainian)
  6. Omelchenko, Т. М., Buryanov, О. А., Lyabakh, А. Р., Mazevich, V, . Shidlovsky, M., & Musienko O. (2018). Correlation of elastic modulus and x-ray bone density in the area of the ankle joint. Orthopaedics, Traumatology and Prosthetics, 3, 80–84. doi: 10.15674/0030-59872018380-84. (in Ukrainian)
  7. Yeshchenko, V. O. (2013). Imitation modeling of the stress-strain state of biomechanical systems for bones of the limbs and jaw of a person with injuries. Bulletin of NTUU «KPI», 2 (68), 84–90. (in Ukrainian)
  8. ISO 5832-3:2016. (n.d.). Retrieved from www.iso.org/standard/66637.html
  9. SOLID187. (2015, December 2). Retrieved from www.sharcnet.ca/Software/Ansys/17.0/en-us/help/ans_elem/Hlp_E_SOLID187.html
  10. Ellington, J. K., & Myerson, M. S. (2013). Surgical correction of the ball and socket ankle joint in the adult associated with a talonavicular tarsal coalition. Foot & Ankle International, 34 (10), 1381–1388. doi: 10.1177/1071100713488762
  11. Knupp, M., Barg, A., Bolliger, L., & Hintermann, B. (2012). Reconstructive surgery for overcorrected clubfoot in adults. The Journal of Bone and Joint Surgery. American Volume, 94 (15), e1101–11017. doi: 10.2106/jbjs.k.00538
  12. De Roode, C. P., Hung, M., & Stevens, P. M. (2013). Supramalleolar Osteotomy. Journal of Pediatric Orthopaedics, 33 (6), 672–677. doi: 10.1097/bpo.0b013e31829d1a9a
  13. Eidelman, M., Katzman, A., Zaidman, M., & Keren, Y. (2011). Deformity correction using supramalleolar gigli saw osteotomy and Taylor spatial frame. Journal of Pediatric Orthopaedics B, 20 (5), 318–322. doi:10.1097/bpb.0b013e328345d877

How to Cite

Omelchenko, T., Buryanov, O., Lyabakh, A., Shidlovkiy, M., Yeshchenko, V., & Dyman, M. (2019). Computer simulation and field study of the stress-strain state of the biomechanical system «fixator-bone» at supramalleolar corrective osteotomies. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 18–26. https://doi.org/10.15674/0030-59872019218-26

Issue

Section

ORIGINAL ARTICLES