Comparative analysis of behavior of the «bone – fixator – endoprosthesis» system for I–III type internal hemipelvectomy reconstruction with and without the use of a metal bar

Viktor Kostiuk, Igor Lazarev, Anatolii Diedkov, Maxim Skiban


Objective: to study the changes of the biomechanical system «bone – fixator – endoprosthesis» under the loading for internal hemipelvectomy I–III type Enneking with reconstruction of the pelvic ring defect by a metalcement spacer with and without reinforcement with a metal bar.

Methods: spatial geometry of the pelvis is reconstructed with the software package «Mimics». Data are obtained by calculating Mises values.

Results: the stresses on the screws in the model were not significantly (0.27 %) larger (σmах 132.6 MPa vs. 132.3 MPa in the model without reinforcement) and did not exceed the strength limit. The maximum value of stress on polymethylmethacrylate in both models is localized in the place of contact with the pubic symphysis and is not significantly (0.4 %) higher in the model with the bar (σmах — 24.7 and 24.6 MPa, respectively). The maximum values of stress on the sacral bone in both models are defined in the zone of proximal screw installation in the lateral mass of the sacral bone, but 5 % larger in the construction without a bar — 10.6 and 10.1 MPa. The maximum permissible loads were: on the sacral bone in a model with a bar of 1.06 body weight, without a bar — 1.01; for polymethylmethacrylate — 3.05 and 3.03 body weight respectively; for metal screws — 3.44 and 3.43 body weight, respectively.

Conclusions: the usage of a metal bar in the system «bone – fixator – endoprosthesis» for internal hemipellectomy type I–III does not change the mechanical strength and stability of the model. The most susceptible to destruction was the lateral area of the sacrum in the place of the proximal screw, which should be strengthened by inserting an additional screw into the upper part of the sacroiliac joint. In the dynamics (walking, running, climbing stairs), the load of the surgery site can be 4 times higher the weight of the body, which due to the linear growth of stress values can lead to the destruction of the structure and requires the usage of additional means of support (crutches, a stick, etc.).


hemipelvectomy; computer mathematical modeling; stress-strain state

Full Text:



Hillmann, A., Hoffmann, C., Gosheger, G., Rоdl, R., Winkelmann, W., & Ozaki, T. (2003). Tumors of the pelvis: complications after reconstruction. Archives of Orthopaedic and Trauma Surgery, 123 (7), 340–344. doi:10.1007/s00402-003-0543-7

Campanacci, D., Chacon, S., Mondanelli, N., Beltrami, G., Scoccianti, G., Caff, G., & Capanna, R. (2012). Pelvic massive allograft reconstruction after bone tumour resection. International Orthopaedics, 36 ( 12), 2529–2536. doi:10.1007/s00264-012-1677-4

Nieminen, J., Pakarinen, T., & Laitinen, M. (2013). Orthopaedic Reconstruction of Complex Pelvic Bone Defects. Evaluation of Various Treatment Methods. Scandinavian Journal of Surgery, 102 (1), 36–41. doi:10.1177/145749691310200108

Delloye, C., Banse, X., Brichard, B., Docquier, P., & Cornu, O. (2007). Pelvic Reconstruction with a Structural Pelvic Allograft After Resection of a Malignant Bone Tumor. The Journal of Bone & Joint Surgery, 89 (3), 579–587. doi:10.2106/jbjs.e.00943

Barrientos-Ruiz, I., Ortiz-Cruz, E. J., & Peleteiro- Pensado, M. (2017). Reconstruction after hemipelvectomy with the ice-cream cone prosthesis: what are the short-term clinical results? Clinical Orthopaedics and Related Research, 475 (3), 735–741. doi: 10.1007/s11999- 016-4881-5

White, E. A., Learch, T. J., Matcuk G., & [et al.] (2013). Review of hemipelvectomy endoprostheses: Indications and imaging. Applied Radiology, 42 (6), 23.

Johnston, J. O., & Gray, R. M. (1990). Hip reconstruction following in-ternal hemipel¬vectomy for primary periacetabular sarcomas. La Chirurgia degli Organi di Movimento, 75 (1 Suppl), 249–252.

Satcher Jr., R. L., O’Donnell, R. J. & Johnston, J. O. (2003). Reconstruction of the Pelvis After Resection of Tumors About the Acetabulum. Clinical Orthopaedics and Related Research, 409, 209–217. doi:10.1097/01.blo.0000057791.10364.7c

Japie, I. M., Bădilă, A., Rădulescu, R., Mitroi, E., Bujdei, A., Dumitru, A., & Cîrstoiu, C. (2018). Pelvic reconstruction with bone cement and total hip prosthesis after resection of chondrosarcoma. Case Report. Romanian Journal of Orthopaedic Surgery and Traumatology, 1 (1), 7–12. doi:10.2478/rojost-2018-0003

Guder, W. K., Hardes, J., Gosheger, G., Henrichs, M., Nottrott, M., & Streitbürger, A. (2015). Analysis of surgical and oncological outcome in internal and external hemipelvectomy in 34 patients above the age of 65 years at a mean follow-up of 56 months. BMC Musculoskeletal Disorders, 16, 33. doi:10.1186/s12891-015-0494-5

Vyrva, O., Mikhanovsky, D., & Karpinsky, M. (2015). Biomechanical study of stress-strain states of the system «endoprosthesis humerus» in terms of tumor resection. Orthopaedics, Traumatology and Prosthetics, 0 (3), 14. doi:10.15674/0030-59872015314-20. (Ukraine)

Hua, Z., Fan, Y., Cao, Q., & Wu, X. (2013). Biomechanical Study on the Novel Biomimetic Hemi-Pelvis Prosthesis. Journal of Bionic Engineering, 10 (4), 506–513. doi:10.1016/s1672-6529(13)60244-9

Enneking, W. F., & Dunham, W. K. (1978). Resection and reconstruction for primary neoplasms involving the innominate bone. The Journal of Bone & Joint Surgery, 60 (6), 731–746. doi:10.2106/00004623-197860060-00002

Kubichek, M., & Florian, Z. (2009). Stress strain analysis of knee joint. Engineering Mechanics, 16 (5), 315–322.

Zatsiorskiy V. M. (1981). Seluyanov Biomehanika dvigatelnogo apparata che-loveka. Moscow : Fizkultura i sport. (Russia)

Copyright (c) 2019 Viktor Kostiuk, Igor Lazarev, Anatolii Diedkov, Maxim Skiban

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.