Tactical treatment optimization for long bone distal metaepiphysis fractures based on biological principles

Authors

  • Iryna Bets Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine

DOI:

https://doi.org/10.15674/0030-59872019157-63

Keywords:

distal metaepiphysis, fracture, treatment, functional remodeling effect, clinical-experimental study, biological principles

Abstract

The intensive development of orthopaedics and traumatology has led to the appearance of problematic issues in the treatment of fractures of distal metaepiphysis of long bones (FDM). The reason to divide them out from the whole array of intraand near-articular fractures was the commonality of classifying characteristics (according to AO classification).

Objective: to improve the results of treatment of FDM fractures based on the use of well-grounded tactical decisions in accordance with biological principles.

Material and Methods: A retrospective study was made; we analyzed medical records of 122 patients. Prospective study included — 217 patients, where we applied the optimized therapeutic fracture therapy. We have done an experimental study for 13 patients with studying of tibia fragments mobility fixed with one-side rod fixators with specially developed equipment. Another one experimental «in vivo» study was made on 28 rats, who received standardized fractures of lateral femur condyle. The physical properties of the Softcast and Scotchcast braces, the properties of these materials and external fixing devices were investigated by mathematical modeling.

Results: in the retrospective group of patients with FDM injuries methods of internal fixation were prevailed — 59 %, external fixation was used in 22 % of cases, conservative treatment — in 19 %. Failed results (32 %) were due to the development of complications, 25 % of which were infections, 7 % — regeneration disorders. In the prospective group, the proportion of conservative methods was 29 %, external fixation — 50 %, internal — 21 %. The change in the treatment method for FDM injuries has been substantiated by the results of experimental studies.

Conclusions: the tactics for treatment of FDM were optimized based on biological principles and functional remodeling, which allowed to increase the number of good results up to 58 % (against 44 % in the retrospective group) and reduced the number of unsatisfactory results to 9 % (compared to retrospective group 32 %). 

References

  1. Alcântara, J. E. Junior, Aguiar, R. A., Sampaio, J. G. L. Neto, Azi, M. L., Sadigursky, D., & Alencar, D. F. (2018). Factors associated with the development of early infection aftersurgical treatment of fractures. Acta Ortopédica Brasileira, 26 (1), 22–26. doi: 10.1590/1413-785220182601173883.
  2. Ali, F., & Saleh, M. (2002). Treatment of distal femoral nonunions by external fixation with simultaneous length and alignment correction. Injury, 33 (2), 127–134.
  3. Anderson, D. D., Marsh, J. L, & Brown, T. D. (2011). The pathomechanical etiology of post-traumatic osteoarthritis following intraarticular fractures. The Iowa Orthopaedic Journal, 31, 1–20.
  4. Arazi, M., Memik, R., Ogün, T. C., & Yel, M. (2001). Ilizarov external fixation for severely comminuted supracondylar and intercondylar fractures of the distal femur. The Journal Bone & Joint Surgery. British Volume, 83 (5), 663–667.
  5. Bagaria, V., Shah, S., & Sharma, G. (2016). Distal Femoral Fractures: Complications and How to Avoid them? Trauma International, 2 (1), 24–27.
  6. Beaman, D. N., & Gellman, R. (2014). Fracture reduction and primary ankle arthrodesis: a reliable approach for severely comminuted tibial pilon fracture. Clinical Orthopaedics and Related Research, 472 (12), 3823–3834. doi: 10.1007/s11999-014-3683-x.
  7. Bedesa, L., Bonneviallea, P., Ehlingerb, M., Bertinc, R., Vandenbuschd, E., & Piétue, G. (2014). External fixation of distal femoral fractures in adults’ multicentre retrospective study of 43 patients. Revue de Chirurgie Orthopédique et Traumatologique, 100 (8), 623–627.
  8. Biz, C., Angelini, A., Zamperetti, M., Marzotto, F., Sperotto, S. P., Carniel, D., & Ruggieri, P. (2018). Medium-Long-Term Radiographic and Clinical Outcomes after Surgical Treatment of Intra-Articular Tibial Pilon Fractures by Three Different Techniques. BioMed Research International, 6054021. doi: 10.1155/2018/6054021.
  9. Bonnevialle, P. (2017). Operative treatment of early infection after internal fixation of limb fractures (exclusive of severe open fractures). Orthopaedics & Traumatology: Surgery & Research, 103 (1S), 67–73. doi: 10.1016/j.otsr.2016.06.019.
  10. Brinker, M. R., O'Connor D. P., Crouch, C. C., Mehlhoff, T. L., & Bennett, J. B. (2007). Ilizarov treatment of infected nonunions of the distal humerus after failure of internal fixation: an outcomes study. Journal of Orthopaedic Trauma, 21 (3), 178–184. doi: 10.1097/BOT.0b013e318032c4d8.
  11. Caffinière, J. Y, Zeitoun, J. M., Segonds, J. M., Lacaze, F. (1997). Treatment of metaphyseal fractures of the tibia by the Ilizarov external fixator. Revue de chirurgie orthopedique et reparatrice de l'appareil moteur, 83 (2), 123–132.
  12. Carbonell-Escobar, R., Rubio-Suarez, J. C., Ibarzabal-Gil, A., & Rodriguez-Merchan, E. C. (2017). Analysis of the variables affecting outcome in fractures of the tibial pilon treated by open reduction and internal fixation. Journal of Clinical Orthopaedics and Trauma, 8 (4), 332–338. doi: 10.1016/j.jcot.2017.05.014.
  13. Darouiche, R. O. (2004). Treatment of infections associated with surgical implants. The New England Journal of Medicine, 350 (14), 1422–1429.
  14. Foni, N. O., Batista, F. A., Rossato, L. H., Hungria, J. O., Mercadante, M. T., & Christian, R. W. (2015). Postoperative infection in patients undergoing inspection of orthopedic damage due to external fixation. Revista Brasileira de Ortopedia, 50 (6), 625–630. doi: 10.1016/j.rboe.2015.10.011.
  15. Galante, V. N., Vicenti, G., Corina, G., Mori, C., Abate, A., Picca, G. & Moretti, B. (2016). Hybrid external fixation in the treatment of tibial pilon fractures: A retrospective analysis of 162 fractures. Injury, 47 (4), 131–137. doi: 10.1016/j.injury.2016.07.045.
  16. Gallucci, G., Donndorff, A., Boretto, J., Constantini, J., & DeCarli, P. (2007). Infected nonunion of the humerus treated with an antibiotic cement rod. Case report. Chirurgie de la Main, 26 (4–5), 242–246. doi: 10.1016/j.main.2007.07.006.
  17. Gaulke, R., & Krettek, C. (2017). Tibial pilon fractures : Advoidance and therapy of complications. Unfallchirurg, 120 (8), 658–666. doi: 10.1007/s00113-017-0366-6.
  18. Henderson, Ch. E., Lujan, T. J., Kuhl, L. L., Bottlang, M., Fitzpatrick, D. C., & Marsh, J. L. (2011). Healing Complications Are Common After Locked Plating for Distal Femur Fractures. Clinical Orthopaedics and Related Research, 469 (6), 1757–1765. doi: 10.1007/s11999-011-1870-6.
  19. Iliopoulos, E., Morrissey, N., Cho, S., & Khaleel, A. (2017). Outcomes of the Ilizarov frame use in elderly patients. Journal of Orthopaedic Science, 22 (4), 783–786. doi: 10.1016/j.jos.2017.03.002.
  20. Johnson, E. E. (2006). Failure of LCP condylar plate fixation in the distal part of the femur. The Journal Bone & Joint Surgery. American volume, 88 (11), 2539–2541; author reply 2541-2542.
  21. Jupiter, J. B. (2008). The management of nonunion and malunion of the distal humerus-a 30-year experience. Journal of Orthopaedic Trauma, 22 (10), 742–750. doi: 10.1097/BOT.0b013e318188d634.
  22. Kloen, P., Helfet, D. L., Lorich, D. G., Paul, O., Brouwer, K. M., & Ring, D. (2012). Temporary joint-spanning external fixation before internal fixation of open intra-articular distal humeral fractures: a staged protocol. Journal of Shoulder and Elbow Surgery, 21 (10), 1348–1356. doi: 10.1016/j.jse.2012.01.015.
  23. Lee, D. J., & Elfar, J. C. (2014). External fixation versus open reduction with locked volar plating for geriatric distal radius fractures. Geriatric Orthopaedic Surgery & Rehabilitation, 5 (3), 141–143. doi: 10.1177/2151458514542337.
  24. Link, B.-C., & Babst, R. (2012). Current Concepts in Fractures of the Distal Femur. Acta chirurgiae orthopaedicae et traumatologiae Cechoslovaca, 79, 11–20.
  25. Mauffrey, C., Vasario. G., Battiston, B., Lewis, C., Beazley, J., & Seligson D. (2011). Tibial pilon fractures: a review of incidence, diagnosis, treatment, and complications. Acta Orthopædica Belgica, 77 (4), 432–440.
  26. McCann, P. A., Jackson, M., Mitchell, S. T., & Atkins R. M. (2011). Complications of definitive open reduction and internal fixation of pilon fractures of the distal tibia. International Orthopaedics, 35 (3), 413–418. doi: 10.1007/s00264-010-1005-9.
  27. McKee, M. (2009). Open intercondylar fractures of the distal humerus: management using a mini-external fixator construct. Journal of Shoulder and Elbow Surgery, 18 (3), 53, 54. doi: 10.1016/j.jse.2009.01.032.
  28. Milenković S., Mitković, M., Micić, I., Mladenović, D., Najman, S., Trajanović M., & Mitković M. (2013). Distal tibial pilon fractures (AO/OTA type B, and C) treated with the external skeletal and minimal internal fixation method. Vojnosanitetski pregled, 70 (9), 836–841.
  29. Monroy, A., Urruela, A., Singh, P., Tornetta, P., & Egol, K. A. (2014). Distal femur nonunion patients can expect good outcomes. The journal of knee surgery, 27 (1), 83–87. doi: 10.1055/s-0033-1349402.
  30. Nieto, H., & Baroan, C. (2017). Limits of internal fixation in long-bone fracture. Orthopaedics & Traumatology: Surgery & Research, 103 (1S), 61–66. doi: 10.1016/j.otsr.2016.11.006.
  31. Osman, W., Alaya, Z., Kaziz, H., Hassini, L., Braiki, M., Naouar, N., & Ayeche M. L. B. (2017). Treatment of high-energy pilon fractures using the ILIZAROV treatment. The Pan African medical journal, 27, 199. doi: 10.11604/pamj.2017.27.199.11066.
  32. Ramlee, M. H., & Derus, A. (2016). The use of external fixator for ankle and foot injuries management-a review on biomechanical perspective. Medical Devices and Diagnostic Engineering, 1 (1), 5–10. doi: 10.15761/MDDE.1000102.
  33. Richards, J. E., Magill, M., Tressler, M. A., Shuler, F. D., Kregor, P. J., & Obremskey, W. T. (2012). External fixation versus ORIF for distal intra-articular tibia fractures. Orthopedics, 35 (6), 862–867. doi: 10.3928/01477447-20120525-25.
  34. Suksathien, Y., & Suksathien, R. (2011). Clinical study of a new design multifunction dynamic external fixator system for open tibial fracture. Journal of the Medical Association of Thailand, 94 (9), 1084–1088.
  35. Varenne, Y., Curado, J., Asloum, Y., Salle de Chou, E., Colin, F., & Gouin, F. (2016). Analysis of risk factors of the postoperative complications of surgical treatment of ankle fractures in the elderly: A series of 477 patients. Orthopaedics & Traumatology: Surgery & Research, 102 (4), 245–248. doi: 10.1016/j.otsr.2016.03.004.
  36. Weber, O., Müller, M. C., Goost, H., Burger, C., Kabir, K., & Wirtz, D. (2009). The articular fracture of the lower limb. Zeitschrift für Orthopädie und Unfallchirurgie, 147 (3), 298–305. doi: 10.1055/s-2008-1039265.
  37. Yin, P., Zhang, Q., Mao, Z., Li, T., Zhang, L., & Tang, P. (2014). The treatment of infected tibial nonunion by bone transport using the Ilizarov external fixator and a systematic review of infected tibial nonunion treated by Ilizarov methods. Acta Orthopædica Belgica, 80 (3), 426–435.

Downloads

How to Cite

Bets, I. (2023). Tactical treatment optimization for long bone distal metaepiphysis fractures based on biological principles. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1), 57–63. https://doi.org/10.15674/0030-59872019157-63

Issue

Section

ORIGINAL ARTICLES