The results of experimental lumbar posterior-lateral fusion with platelet rich fibrin




experimentall umbar posterior-lateral fusion, rabbits, bone autografts, allografts, platelet rich fibrin


In the case of instrumental spine fusion with the achieved biomechanical rigidity of the operated segment, the use of platelet-rich fibrin to stimulate osteogenesis is promising.

Objective: to study the possibility of lumbar spine fusion under conditions of platelet-rich fibrin usage in the experiment.

Methods: fusion modeling was made in 42 mature male Californian rabbits, which were divided into 6 groups of 7 individuals in each group In the 1st group we did not use grafts (control group); in the 2nd group we used bone autografts; in the 3rd — bone autografts with platelet-rich fibrin; in the 4th — allografts from iliac crest; in the 5th — a llografts f rom i liac c rest c ombined with platelet-rich fibrin; in the 6th — platelet-rich fibrin. Methods: roentgenological, morphological, statistical.

Results: false positive fusion was revealed on X-rays in the 1st group in 28.6 % of cases, in the group 6th — in 7.1 %, false negative — in the 2nd and t he 3rd groups — equal in 7.1 %. In the control group 1st spine fusion was not found. In all other groups we have found the callous formation with different amount of bone, cartilage and connective tissue. In these groups on radiographs, the optical density of the newly formed bone exceeded the same parameters of the cancellous bone of the adjacent vertebral bodies.

Conclusions: the greatest osteogenic properties were found in the case of a combination of bone autografts with platelet-rich fibrin: the highest incidence of fusion (71.4 %) was recorded, in which the predominantly mature bone tissue was formed. Regardless of the type of the graft (auto- or allo-), platelet-rich fibrin increased its reparative capabilities, providing a higher frequency of bone marrow formation based on the results of radiography a nd h istology.

Author Biographies

Volodymyr Radchenko

Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD, Prof. in Traumatology and Orthopaedics

Olexandr Palkin

Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

Vera Kolesnichenko

Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

MD in Traumatology and Orthopaedics

Nataliya Ashukina

Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Biol. Sci.

Zinaida Danishchuk

Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv


Chun, D. S., Baker, K. C., & Hsu, W. K. (2015). Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurgical Focus, 39(4), E10. doi:10.3171/2015.7.focus15292

Choudhri, T. F., Mummaneni, P. V., Dhall, S. S., Eck, J. C., Groff, M. W., Ghogawala, Z., … Kaiser, M. G. (2014). Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 4: Radiographic assessment of fusion status. Journal of Neurosurgery: Spine, 21(1), 23–30. doi:10.3171/2014.4.spine14267

Radchenko, V. A., Palkin, A. V., Kolesnichenko, V. A. (2017). Radiological evaluation of experimental lumbar monosegmental posterolateral spinal fusion using autologous platelet-rich fibrin. Orthopedics, traumatology and prosthetics, 2(607), 45–51. doi: 10.15674/0030-59872017245-51 (in Ukrainian)

Dede, O., Thuillier, D., Pekmezci, M., Ames, C. P., Hu, S. S., Berven, S. H., & Deviren, V. (2015). Revision surgery for lumbar pseudarthrosis. The Spine Journal, 15(5), 977–982. doi:10.1016/j.spinee.2013.05.039

Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., Salonna, G., … Logroscino, G. (2014). Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine, 25(10), 2445–2461. doi:10.1007/s10856-014-5240-2

Wang, W., Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: а review. Bioactive Materials, 2(4), 224–247. doi: 10.1016/j.bioactmat.2017.05.007

De Long, W. G., Einhorn, T. A., Koval, K., McKee, M., Smith, W., Sanders, R., & Watson, T. (2007). Bone grafts and bone graft substitutes in orthopaedic trauma surgery. The Journal of Bone and Joint Surgery-American Volume, 89(3), 649–658. doi:10.2106/00004623-200703000-00026

Fillingham, Y., Jacobs, J. (2016). Bone grafts and their substitutes. Bone Joint Journal, 98-B (1 Suppl A), 6–9. doi: 10.1302/0301-620X.98B.36350

Stevenson, S. (1992) There sponse to bone allografts. Journal of Bone and Joint Surgery. Am., 74 (6), 939–950.

Khiste, S. V., Tari, R. N. (2013). Platelet-rich fibrin as a biofuel for tissue regeneration. Hindawi Publishing Corporation. ISRN Biomaterials: 627367. doi: 10.5402/2013/627367

Gupta, V., Bains, V. K., Singh, G. P., Ashish, M., & Bain, R. (2011). Regenerative potential of platelet rich fibrin in dentistry: literature review. Asian Journal of Oral Health & Allied Sciences, 1 (1), 22–28.

Verma, A., Srivastava, S., Khurshid, S., Parveen, F., & Pandey, P. (2015). Platelet rich fibrin: a promising innovation in regenerative therapy. Journal of Evolution of Medical and Dental Sciences, 4(33), 5748–5756. doi:10.14260/jemds/2015/840р

Kawamura, M., & Urist, M. R. (1988). Human Fibrin Is a Physiologic Delivery System for Bone Morphogenetic Protein. Clinical Orthopaedics and Related Research, (235), 302–310. doi:10.1097/00003086-198810000-00031

Habibovic, P., & Barralet, J. (2011). Bioinorganics and biomaterials: Bone repair. Acta Biomaterialia, 7(8), 3013–3026. doi:10.1016/j.actbio.2011.03.027

Oncu, E., Bayram, B., Kantarci, A., Gulsever, S., & Alaaddinoglu, E. (2016). Positive effect of platelet rich fibrin on osseointegration. Medicina Oral Patología Oral y Cirugia Bucal, 0-0. doi:10.4317/medoral.21026

European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. Retrieved from http: // (in Ukrainian)

Boden, S. D., Schimandle, J. H., & Hutton, W. C. (1995). The use of an osteoinductive growth factor for lumbar spinal fusion. Spine, 20(24), 2633-2644. doi:10.1097/00007632-199512150-00004

Radchenko, V. А., Palkin, A. V., Kolesnichenko, V. A. (2017). Selection criteria of optimal parameters of experimental lumbar intertransverse spinal fusion in rabbits. Morphology, 11, 4, 40–47. (in Ukrainian)

Timoshenko, O. P., Veretsun, A. G. (2001). Study of diagnostic capabilities of the «Х-rays» software complex. Medicine and ..., 1, 62–64. (in Russian)

Hayeri M. R., Tehranzadeh J. (2009). Diagnostic imaging of spinal fusion and com¬plications. Applied Radiology, 38, 14–28.

Sarkisov, D. S., Perov, Yu. L. (1996). Microscopic technique. Moscow: Medicine. (in Russian)

Gezici, A. R., Ergün, R., Gürel, K., Yilmaz, F., Okay, Ö., & Bozdoğan, Ö. (2009). The Effect of Risedronate on Posterior Lateral Spinal Fusion in a Rat Model. Journal of Korean Neurosurgical Society, 46(1), 45. doi:10.3340/jkns.2009.46.1.45

Thakkar, R. S., Malloy, J. P., Thakkar, S. C., Carrino, J. A., Khanna, A. J. (2012). Imaging the postoperative spine. Radiologic Clinics of North America, 50(4), 731–747. doi:10.1016/ j.rcl.2012.04.006

Hayashi, D., Roemer, F. W., Mian, A., Gharaibeh, M., Müller, B., & Guermazi, A. (2012). Imaging features of postoperative complications after spinal surgery and instrumentation. American Journal of Roentgenology, 199(1), W123-W129. doi:10.2214/ajr.11.6497

Boden, S. D., Schimandle, J. H., & Hutton, W. C. (1995). an experimental lumbar intertransverse process spinal fusion model. Spine, 20(supplement), 412–420. doi:10.1097/00007632-199502001-00003

Schuler, T. C., Subach, B. R., Branch, C. L., Foley, K. T., & Burkus, J. K. (2004). Segmental lumbar lordosis. Journal of Spinal Disorders & Techniques, 17(5), 372–379. doi:10.1097/01.bsd.0000109836.59382.47

Brodsky, A. E., Kovalsky, E. S., & Khalil, M. A. (1991). Correlation of radiologic assessment of lumbar spine fusions with surgical exploration. Spine, 16(Supplement), S261–S265. doi:10.1097/00007632-199106001-00017

Herrera Herrera, I., Moreno de la Presa, R., Gonzalez Gutierrez, Bárcena Ruiz, R. E., & García Benassi, J. M. (2013). Evaluation of the postoperative lumbar spine. Radiologia, 55 (1), 12–23. doi: 10.1016/j.rxeng.2011.12.002

Riordan, A. M., Rangarajan, R., Balts, J. W., Hsu, W. K., & Anderson, P. A. (2013). Reliability of the rabbit postero-lateral spinal fusion model: A meta-analysis. Journal of Orthopaedic Research, 31(8), 1261–1269. doi:10.1002/jor.22359

Williams, A. L., Gornet, M. F., Burkus, J. K. (2005). CT evaluation of lumbar interbody fusion: current concepts. American Journal of Neuroradiology, 26(8), 2057–2066.

Berquist, T. H. (2006). Imaging of the postoperative spine. Radiologic Clinics of North America, 44(3), 407–418.

Parizel, P. M., Van Goethem, J. W., van den Hauwe, L. et al. (1996) Imaging of spinal implants and radiologic assessment of fusion. Instrumented Fusion of the Degenerative Lumbar Spine. In M. Szpalski, R. Gunzburg, D. M. Spengler, A. Nachemson (Ed.) State of the Art, Questions, and Controversis. Philadelphia : Lippincot-Raven Publishers. Parizel, P. M., Van Goethem, J. W., van den Hauwe, L. et al. (1996) Imaging of spinal implants and radiologic assessment of fusion. Philadelphia: Lippincot-Raven Publishers.

Boden, S. D., Schimandle, J. H., & Hutton, W. C. (1995). The Use of an Osteoinductive Growth Factor for Lumbar Spinal Fusion. Spine, 20(24), 2633–2644. doi:10.1097/00007632-199512150-00004

Choukroun, J., Diss, A., Simonpieri, A., Girard, M., Schoeffler, C., Dohan, S. L., … Dohan, D. M. (2006). Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part V: Histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 101(3), 299–303. doi:10.1016/j.tripleo.2005.07.012

Gaßling, V. L., Açil, Y., Springer, I. N., Hubert, N., & Wiltfang, J. (2009). Platelet-rich Plasma and Platelet-rich fibrin in human cell culture. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 108(1), 48–55. doi:10.1016/j.tripleo.2009.02.007

Moojen, D. J., Everts, P. A., Schure, R. M., Overdevest, E. P., van Zundert, A, Knape, J. T., Castelein, R. M., Creemers, L. B., Dhert, W. J. (2008). Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus. Journal of Orthopaedic Research, 26(3), 404–410. doi: 10.1002/jor.20519




Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >>